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Abstract: 

 

In this paper, the mechanical buckling behavior of circular plates with variable thicknesses 

made of bimorph functionally graded materials (FGMs) under uniform mechanical loading 

circumstances has been studied for the first time. The governing equations are derived based 

on the first-order shear deformation plate theory and von Karman's assumptions. The material 

characteristics are symmetric about the middle plane of the plate and these characteristics 

vary along the thickness direction according to the power law. The middle plane of the plate is 

made of pure metal, which changes to pure ceramic as it approaches the outer sides. In order 

to determine the pre-buckling force in the radial direction, the membrane equation is solved 

using the shooting method. Then, the stability equations are solved numerically with the help 

of pseudo-spectral method and choosing the Chebyshev polynomials as basis functions. The 

numerical results are presented for both clamped and simply supported boundary conditions 

by considering linear and parabolic patterns for the thickness variations. The influences of 

various parameters like volume fraction index, thickness profile and side ratio on the buckling 

behavior of these plates have been evaluated. The obtained numerical results show that there 

exists an optimal value for the thickness parameter, wherein the buckling load becomes 

maximum. The buckling load of circular FGM plates increases more than 100% when the 

volume fraction index increases from 0 to 5. The buckling load of the clamped circular FGM 

plates decreases about 15% as the side ratio increases from 0.01 to 0.2.   

 

 

1. Introduction 

The plates are very important structural elements due to 

the fact that they can be fabricated in different 

geometrical shapes and furthermore, they are also being 

utilized in various industries. Based on their usage, 

thermal or mechanical buckling may occur in the plates. 

Applying unallowable mechanical loads to the plates may 

damage them or make them unstable. Hence, the 

investigation of the plate's stability behavior should be 

regarded as an important issue in engineering discipline. 

In the engineering computations and designations, the 

determination of the minimum buckling load is a key 

issue. 
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During the recent years, functionally graded materials 

have been used in advanced professions, especially in the 

space and nuclear industries. Until now, a large number 

of researches have been conducted on these materials. 

The FGMs are usually made of a mixture of ceramic and 

metal or a combination of ceramic, metal and other 

alloys. From micro-structural point of view, these 

materials are non-homogenous and their micro-structural 

properties, including the distribution type and the phase 

size, alter in a continuous and smooth manner. These 

gradual changes of the micro-structural properties lead to 

the gradual changes of the thermal and mechanical 

properties in FGMs [1]. The plate type structural 

elements of FGMs have their wide applications in nuclear 

energy reactors, solar energy generators and space 

shuttles. They have also particular applications in 

industries related to defense. For example, FGM plates 

are used as penetration resistant materials for armour 

plates and bullet-proof vests [2]. 

One of the important and hot topics related to the 

solid mechanics is the stability analysis and the 

investigation of the buckling behavior of the plates. 

Moreover, designers have always paid heed to the plates 
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with variable thickness, whenever they aimed to satisfy 
the economic considerations. It was in 1891, that Brayan 

[3] proposed the first solution for the stability problem of 

the plates. He investigated the buckling of a circular plate 

with clamped boundary conditions under a radial uniform 

load. Another research was carried out by Yamaki [4] 

who focused on the buckling of annular plates. In this 

reference, the mechanical loads were applied on the 

internal and external edges of the annular plate. Yamaki 

showed that the critical buckling mode of the annular 

plates is usually different from the corresponding critical 

buckling mode of the circular plates. Another study was 

carried out by Timoshenko and Gere [5]. They 

concentrated on the stability problem of various 

engineering structures such as columns, frames, curved 

beams, plates and membranes. Then, Brush and Almroth 

[6] comprehensively analyzed the buckling problems of 

columns, plates and membranes. They derived 

formulations related to the non-linear equilibrium and 

stability equations of the aforementioned structures. 

Reddy and Khdeir [7] have focused on the buckling and 

free vibration analysis of the multi-layer composite 

rectangular plates with various boundary conditions by 

using classic, first-order and third-order shear 

deformation theories. In addition to the analytic solution, 

the numerical solution was also provided based on the 

finite element method (FEM). Kadkhodayan et al. [8] 

investigated the buckling analysis of circular, annular and 

rectangular plates based on the classic theory. They used 

the dynamic relaxation method for solving the governing 

equations. The obtained results of these researchers 

indicate that the classic theory estimates the natural 

frequencies and critical knuckling loads beyond the actual 

values. They showed that this difference increases by 

increasing the thickness to the lateral length ratio. Based 

on the first-order shear deformation theory and by using 

the FEM, Ozakca et al. [9] studied the buckling behavior 

and optimum design of the variable thickness circular and 

annular plates. Xu et al. [10] used three-dimensional (3D) 

thermal elasticity for the mechanical buckling analysis of 

the circular and annular plates. They obtained results for 

various distributions of the Poisson's ratio and made a 

comparison between them. Najafizadeh and Eslami [11, 

12] investigated the buckling analysis of circular plates 

made of one-sided functionally graded materials under 

various types of thermal loading and boundary 

conditions. They used the classic theory and presented an 

analytical solution for the plates under the uniform radial 

compression. Naei et al. [13] studied the mechanical 

buckling of variable thickness circular plates made of 

one-sided FGMs under uniform radial pressure based on 

FEM and the classical plate theory. In their research, they 

considered both simply supported and clamped boundary 

conditions. Based on the first-order shear deformation 

theory, Sepahi et al. [14] investigated the thermal 

buckling and post-buckling analysis of the annular plates 

made of FGMs. They assumed a particular pattern of 

distribution for variations of the temperature along the 

radial direction. They solved the governing differential 

equations by using the differential quadrature method. 

Golmakani and Emami [15] studied the non-linear 

bending and buckling analysis of the annular plates made 

of FGMs. They assumed a special distribution for the 

FGMs along the radial direction. In this reference, the 

numerical solution is based on the dynamic release 

method and the governing equations are extracted based 

on the first-order shear deformation theory. Khosravi and 

colleagues [16, 17] presented a precise closed-form 

solution for the thermal buckling of circular plates made 

of bimorph FGMs by adopting the first-order shear 

deformation theory. They evaluated the effects of 

different factors including the ratio of thickness to the 

plate radius and the volume fraction index on the critical 

temperature. Lezgy-Nazargah et al. [18] investigated the 

static, free vibration and dynamic responses of beams 

made of functionally graded piezoelectric material via an 

efficient three-noded beam element. The FEM of these 

researchers is based on a refined trigonometric shear 

deformation theory which does not need any shear 

correction factor. Lezgy-Nazargah and Farahbakhsh [19] 

studied the relation between the material gradient 

properties and the optimum sensing/actuation design of 

the functionally graded piezoelectric beams. They used 

3D finite element analysis in order to find an optimum 

composition profile for these types of sensors and 

actuators. A 3D exact solution was presented by Lezgy-

Nazargah for cylindrical bending and dynamic free 

vibration analyses of the functionally graded piezoelectric 

laminated plates [20, 21]. Lezgy-Nazargah solved the 

exact 3D equilibrium equations by using the Peano series 

solution and adopting the state space formalism. Lezgy-

Nazargah [22] studied the fully coupled thermo-

mechanical behavior of bi-directional FGM beams by 

adopting a computationally low cost isogeometric FEM. 

For presenting the in-plane displacement field, Lezgy-

Nazargah used a combination of polynomial and 

exponential expressions. Lezgy-Nazargah and Meshkani 

[23] developed a four-node quadrilateral partial mixed 

plate element with low degrees of freedom for static and 

free vibration analyses of FGM plates rested on Winkler-

Pasternak elastic foundations. They obtained the discrete 

form of the governing equations by employing the partial 

form of the Reissner's Mixed Variational Theorem. By 

using the first-order shear deformation theory, Baferani et 

al. [24] studied the free vibration response of FGM 

rectangular plates. They investigated the effects of in-

plane displacements on the natural frequencies of such 

plates. Based on the power series expansions, Soltani [25] 

developed a semi-analytical technique to investigate the 

free bending vibration behavior of axially functionally 

graded non-prismatic Timoshenko beams subjected to a 

point force at both ends. In this reference, the exact 

fundamental solutions are acquired by expressing the 

variable coefficients that appeared in motion equations in 

a polynomial form. Stability analysis of thin-walled 

beams and columns was also studied by Soltani and 

colleagues [26-29]. 

In this study, the first-order shear deformation theory 

and von Karman's assumptions were utilized for the 

mechanical buckling analysis of circular plates with 

variable thickness. It is assumed that the plate is made of 

the bimorph FGMs. For obtaining the equilibrium 
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equations, the stationary potential energy method is 

utilized. The equilibrium equations are firstly obtained 

via the adjacent equilibrium method. Then, the 

equilibrium equations are solved by employing the 

pseudo-spectral method by selecting the Chebyshev 

polynomials as the basis functions. Note that pseudo-

spectral methods are a class of numerical methods used in 

applied mathematics and scientific computing for the 

solution of partial differential equations. These methods 

are also known as discrete variable representation 

methods. They are closely related to spectral methods, but 

complement the basis with an additional pseudo-spectral 

basis, which allows representation of functions on a 

quadrature grid [30]. The effects of geometric parameters, 

material properties and mechanical loading on the 

buckling behavior are discussed in details for the plates 

with both simply supported and clamped boundary 

conditions. For validation, the results were compared 

with previous published works. The comparisons show 

that the results predicted by the present formulation are 

extremely accurate.  

 

2. Governing equations of the problem 

2.1. Plates with variable thickness 

In FGM plates, the mechanical properties usually change 

in the thickness direction depending on the volume 

fraction of the constituent elements. Variations of the 

volume fraction at any point along the thickness direction 

are dependent to the distance of that point from the 

reference plane as well as the thickness size of the plate. 

Assume a circular FGMs plate in the cylindrical 

coordinate system (r,θ,z). In this system, r, θ and z 

represent the radial, circumferential and thickness 

directions, respectively. If the plate thickness is constant, 

then the volume fraction will be the same for all sections 

and it will only be a function of the z coordinate. 

However, if the plate thickness is variable, the thickness 

size will be different in the radial direction, which will 

make the definition of the volume fraction more complex. 

With regard to the model used for defining the volume 

fraction, it is possible to consider two types of plates with 

variable thickness which are exceedingly different from 

each other, especially in terms of the production process. 

In the first model, the volume fraction variations are 

dependent on the thickness size. Since the thickness size 

in this model is variable in the r direction, so the volume 

fraction will be a function of both the r and z coordinates 

(see Fig. 1-a and Fig. 1-c). For the fabrication of such a 

plate according to powder metallurgy, it is essential to 

control and observe the ceramic and metal combination in 

both thickness and in-plane directions simultaneously. 

Another model can also be suggested for FGM plates 

with variable thickness. In this model, the volume 

fraction in the thickness direction is the same for all 

planes whose distances are equal from a reference plane. 

In other words, the volume fraction at a certain distance 

from the reference plane will be equal for all transverse 

sections. After reaching the second constituent material, 

the residual thickness of the plate is filled homogenously 

with second material. As shown in Fig. 1-b and Fig. 1-d, 

such distribution of the volume fraction leads to the 

development of a FGM layer with constant thickness. For 

the production of these types of FGM plates with variable 

thickness, it is essential to control the volume fraction 

values with respect to the reference plane only in the 

thickness direction. Therefore, the fabrication process of 

these types of FGM plates is similar to the production 

process of the FGM plates with constant thickness, which 

is not difficult to accomplish. One-sided, as well as 

bimorph FGM plates are illustrated in Fig. 1 based on the 

two possible models described for the volume fraction 

variation. The plate which is studied in this research is a 

bimorph FGM plate (see Fig. 1-c). 
 

 
(a)                                               (c) 

 
(b)                                               (d) 

Fig. 1: Various types of circular plates with variable thickness: 

(a) one-sided FGM plate with volume fraction dependent on 

thickness; (b) one-sided FGM plate with a FGM layer of 

constant thickness; (c) bimorph FGM plate with volume fraction 

dependent on thickness; (d) bimorph FGM plate with a FGM 

layer of constant thickness 

 

2.2. Problem Geometry 

The geometry of the studied problem is an axially 

symmetric circular plate with radius b and thickness h(r). 

As shown in Fig. 2, the coordinate system is located at 

the center of the plate upon the middle plane, and the r 

and z coordinates are located in the radial and thickness 

directions, respectively. Due to the axial symmetry, the 

circumference direction is not considered in the 

formulations. 

 

 
Fig. 2:  Geometry of the circular bimorph FGM plate with 

variable thickness 

 

The letters u and w indicate the displacements of the 

middle plane along the radial and thickness directions, 
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respectively. The total thickness of the plate h(r) will be a 

function of the radial coordinate: 

   r
 

    
 

p

1 2 1

r
h h h h

b
                                              (1) 

where h1 and h2 indicate the thickness of the plate at the 

center and edge, respectively. The profile variation of the 

thickness is showed by p parameter. Although the 

formulation and the method of solution allow the 

selection of any desirable value for the p parameter, the 

present solution is only accomplished for the linear and 

parabolic cases. p is assumed to be equal to 1 and 2 for 

the linear and parabolic case, respectively. 

For a plate with the constant volume of V, the 

following relation is established between the geometric 

parameters: 

 
  



2 1

0 12

2 h hV
h h

p 2π b
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in which h0 denotes the thickness of a plate with constant 

thickness and the same volume. Moreover, the variations 

of the thickness in the radial direction can be expressed 

by introducing the dimensionless taper parameter Ω: 




2

1 2

h
Ω

h h
                                                                    (3) 

The above parameter can be variable between 0 to 1. The 

zero value implies the maximum thickness at the center 

and zero thickness on the edge, while the 1 value 

indicates the maximum thickness on the edge and zero 

thickness at the center. The Ω=0.5 value implies a plate 

with constant thickness. 

 

2.3 The governing equations of bimorph FGMs 

The functionally graded materials are categorized as 

heterogeneous materials and the corresponding properties 

are a function of the volume fraction of constituent 

materials (i.e. ceramic and metal). Thus, the modulus of 

elasticity of FGMs can be written as: 

f m m c cE V E V E                                                          (4) 

where Vm and Vc are the volume fraction of the metal and 

ceramic, respectively. Vm and Vc can be defined as 

follows: 
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N is the volume fraction index of the bimorph FGMs, 

which specifies the combination mode of the ceramic and 

metal volume fraction along the thickness direction. The 

zero and infinitive values for this index indicate the pure 

metal and ceramic, respectively.  

 

2.4 Equilibrium and stability equations 

According to the first-order shear deformation plate 

theory, the displacement field of the bimorph FGMs plate 

can be defined as follows:  
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where u(r) and w(r) are displacements of the middle 

plane of the circular plate along r and z directions, 

respectively.  r denotes the slope rotation in the r-z 

plane. The buckling problem is classified as the 

geometric nonlinear problem. By using Eq. (6), the strain-

displacement equations can be defined as follows based 

on the von Karman's assumptions: 

r r0 0
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The strain components can be expressed as follows: 
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The curvatures can also be expressed as follows: 
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in which  
,r

 denotes the derivative with respect to the 

radial coordinate. Given the fact that FGMs are isotropic 

materials, the stress-strain relations based on the Hooke's 

law can be expressed as follows: 
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Note that the above equation is obtained by assuming a 

constant value for the Poisson's ratio and ignoring the 

stretching of the plate along the thickness direction.   

and r denote the in-plane normal stresses while rz  

denotes the in-plane shear stress at a point with distance z 

from the mid-plane of the FGMs plate. By integrating the 

stress components over the thickness of the plate, the 

following expressions are obtained for the resultant forces 

and moments: 
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K indicates the shear correction coefficient of the first-

order shear deformation theory, and its value is taken as 

5/6. By substituting Eq. (10) into Eq. (11), the relation 

between the resultant forces and moments in terms of the 

strain components can be calculated as: 
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Coefficients A11 and D11 are obtained by integrating the 

mechanical properties through the thickness of the plate. 

As the plate thickness is variable, the integration limits 

are a function of the radial coordinate. Thus, A11 and D11 

coefficients will also be a function of the radial 

coordinate: 
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The equilibrium equations for circular plates can be 

obtained by utilizing the principle of minimum potential 

energy, or directly by writing the equilibrium equations 

for one arbitrary element. Due to the axial symmetry, 

there exists no variation in the circumferential direction, 

and only the derivatives relative to the radial direction are 

present in the differential equations: 
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The equilibrium equation can be rewritten in terms of 

displacement components by employing the force-

displacement and moment-displacement relations. By 

substituting relations (7), (9) and (12) into Eq. (14), we 

have: 
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The above obtained equations are regarded as the non-

linear system of differential equations. It is common to 

use the adjacent equilibrium method for obtaining the 

stability equations from non-linear equilibrium equations. 

This method is helpful for stability analysis of structures 

and calculating their critical buckling loads. This method 

works based on definitions of the first and second 

equilibrium paths and the bifurcation point. Using this 

method, the bifurcation points can be obtained from the 

solution of linear differential equations. The required 

equations of this method are extracted via perturbation 

technique, wherein the displacement field (u,w,ϕ) is 

replaced by the field (u0+u1,w0+w1,ϕ0+ϕ1). The initial 

equilibrium state (i.e. before buckling) is indicated by 

(u0,w0,ϕ0), which refers to an equilibrium mode on the 

initial path and (u1,w1,ϕ1) is infinitesimal displacements 

within the displacement field. It should be noted that, at 

the prebuckling state, the plate has not been buckled and 

the lateral displacement has not occurred, so w0 and ϕ0 are 

equal to zero. 

By substituting these new fields into Eq. (15), all 

expressions which do not include infinitesimal 

displacements, will be excluded for the resulted 

equations. Furthermore, if the increase in the 

displacement is adequately small, only the first-order 

expressions of (u1,w1,ϕ1) will remain in the equations, 

while other expressions with higher order expressions 

will be omitted. Hence, the resulted stability equations are 

linear and homogenous in terms of hypothetical small 

displacement fields. Therefore, the stability equations 

may be written as follows: 
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11 11, 55 1 55 1,2
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0r rD r D r A A w
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It is essential to noted that, finding a solution for this 

system will lead to finding an adjacent equilibrium state 

for the initial equilibrium state. The independent variables 

of this system are (u1,w1,ϕ1). Nr0 denotes the radial pre-

buckling force. It can be observed that the first equation 

of the stability equations system is not dependent on the 

second and third equations. Therefore, the second and 

third equations will be used to determine the critical 

buckling compression. After solving the eigenvalue 

problem, the lowest value obtained for Nr0 should be 

regarded as the critical buckling compression.   

The pre-buckling mode is considered as the 

equilibrium state prior to the buckling occurrence and it 

can be determined via non-linear equilibrium of Eq. (15). 

However, it is worth taking into account that the plate has 

not experienced any flexural deformation in the pre-

buckling state, and the value of w0 and ϕ0 is equal to zero. 

Concerning these conditions, the equilibrium equations 

should be rewritten as follows:  



Numerical Methods in Civil Engineering, Vol. 3, No. 2, December. 2018  

 

 11 0, 11 11, 0,

1
rr r rA u A r A u

r
     

 11 11, 02

1
0rA r A u

r
                                            (17) 

The above equation is called the membrane equation of 

the plate, which is a simple linear differential equation. 

The only independent variable of the equation is u0. By 

obtaining the value of u0, the in-plane forces can be 

calculated as follows: 
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                                         (18) 

The mechanical loading is in the form of uniform 

mechanical compression P, which is applied on the edge 

of the FGMs plate. In this case, the edge has more 

freedom to move in the radial direction. Due to the 

symmetry, the in-plane displacement at the center of the 

plate equals to zero. Hence, the boundary conditions of 

the membrane equation are as follows: 

 0 0 0u    (at center) 

0 11 0, 0r rN A u u P
b

 
    

 
  (on edge)                    (19) 

Furthermore, in order to solve the stability Eq. (16), it is 

essential to determine the boundary conditions for lateral 

displacement and rotation at the center and on the edge of 

the circular FGMs plate. Two different boundary 

conditions are assumed for the edge of the circular plate: 

simply supported and clamped. Thus, the boundary 

conditions of the stability equations are as follows: 

   1 1,0 0, 0 0rw        (at center)  

   1 10, 0w b b           (clamped edge) 

 

   

1

1, 1

0

0r

w b

b b
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   (simply supported edge)       (20) 

 

3. Solving Numerical Equations 

3.1. Solving membrane equation  

Numerical integration methods can be employed to solve 

simple differential equations with variable coefficients; 

the most conventional one is Runge-Kutta method. 

However, the application of these methods is limited, and 

they can be used only for solving initial value problems. 

The boundary value problem can be converted into initial 

value problem using the shooting method, and then one 

can utilize conventional methods and simple numerical 

integrations (e.g. Runge-Kutta method) to solve the 

problem. The membrane Eq. (17) is regarded as a second-

order simple linear differential equation, and by solving 

it, the value of in-plane displacement (u0) and its 

derivative (u0,r) will be obtained. The equation may be 

solved using the fourth-order Runge-Kutta method. Using 

the force-displacement relations, the in-plane radial force, 

which is taken into account as the pre-buckling load can 

be calculated. 

 

3.2. Solving stability equations 

The pseudo-spectral approaches are regarded as a family 

of methods used for solving differential equations. The 

fundamental idea of this method is the approximation of 

unknown function u(x) by superposition of (n+1) 

sentence of basis functions  j x with unknown 

amplitude aj [30]: 
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                                        (21) 

The selection of base functions for any problem should be 

accomplished with considering the problem geometry.  

Although various types of base functions can be used in 

the pseudo-spectral method, Chebyshev polynomials are 

the most important and significant functions that are 

helpful for non-oscillating problems with a limited 

geometry. The simplest method for obtaining these basis 

functions is using the following recursive relations: 

1 1T    

2T x  

1 12n n nT x T T                                                        (22) 

In the other words, we have taken   ( )j jx T x   to 

solve the plate's differential equations by using the 

pseudo-spectral approach. The details of the pseudo-

spectral method can be found in Boyd's book [30]. 

In order to solve the equations related to the FGM 

plates using pseudo-spectral methods, the stability 

equations and boundary conditions should be transmitted 

from the physical range of  0,r b to the solution range 

of  1,1x    as: 

2 2
1,

r
x dx dr

b b
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We also introduce the following dimensionless values: 
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By using Eqs. (23) and (24), the dimensionless stability 

equations and corresponding boundary conditions can be 

rewritten as follows:  
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Note that   indicates the derivative with respect to x 

variable. The independent variables of the stability 

equations are x1 (dimensionless transverse displacement) 

and x2 (rotation in the r-z plane). In the pseudo-spectral 

method, the solution is regarded as a set of Chebyshev's 

basis functions. As a result, the x1 and x2 variables at the 

i-th collocation point are considered as follows: 
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The subscript j refers to j-th Chebyshev polynomial while 

the superscript i refers to the i-th collocation point. By 

substituting the above mentioned equations into the 

stability Eq. (25), the following equations in terms of 

Chebyshev's basis functions will be obtained: 
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Similarly, the following equations will be obtained for the 

boundary conditions: 
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Concerning the fact that there are two independent 

variables, we need (2n+2) algebraic equation for solving 

the problem. The equations linked to the boundary 

conditions (29) can supply four algebraic equations. 

Finally, we need (2n-2) algebraic equation, which can be 

provided by selecting (n-1) collocation points and 

satisfying Eq. (28) at these selected points. In the pseudo-

spectral method, the unknown coefficients are obtained 

by satisfying the differential equations at collocation 

points. During the use of Chebyshev polynomial as the 

basis functions, the collocation points are opted based on 

Chebyshev-Gauss-Lobatto Grid for achieving the 

minimum error: 
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i

i
x i n
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In case of mechanical loading, the buckling 

dimensionless parameter   is determined using the 

following relation: 
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where 
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3. Numerical Results and Discussion 

This section presents the numerical results for buckling 

analysis of variable thickness circular plates which are 

made of bimorph FGMs. As shown in Fig. 3, the 

considered circular plates are either simply supported or 

clamped, and subjected to radial uniform compression. It 

is assumed that the thickness variation is in two different 

forms, including linear and parabolic. Since the buckling 

analysis of bimorph FGMs circular plates with variable 
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thickness has not been studied yet, similar results are not 

available to compare our present results with them. 

Hence, in order to validate the derived equations and 

solution method, the problem was initially solved for 

homogeneous plates with variable thickness. After the 

certainty of the accuracy of the equations and employed 

solution method, the buckling behaviors of the circular 

plates with variable thickness made of bimorph FGMs 

were evaluated and the obtained numerical results were 

presented and discussed. 

 
(a) 

 
(b) 

Fig. 3: Boundary conditions of the circular FGM plate: (a) 

clamped; (b) simply supported  

 

 

4.1 Homogeneous plates 

As determination of the pre-buckling mode under 

distributed loading in radial direction is a prerequisite for 

solving the stability equations, firstly, the accuracy of the 

proposed formulation had to be appraised by solving the 

membrane equation for pre-buckling load.  The obtained 

results were compared with the results obtained by Wang 

et al. [31]. Wang and colleagues derived the Plates' 

equations based on Mindlin theory and used Rayleigh-

Ritz method for solving the corresponding differential 

equations. Note that the results of Wang and colleagues 

are presented in terms of the stress function f. The 

following relation can be defined between the stress 

function f  and pre-buckling force 0rN : 

0rf r N                                                                      

(32) 

The variations of dimensionless stress function f  with 

respect to the dimensionless radial coordinate r/b are 

depicted in Fig. 4. In this figure, various values are 

considered for the taper parameter Ω. Note that the 

dimensionless stress function f is defined as: 

 
0

0

r

r

r Nf
f

b N b b P
                                                 (33) 

It is worth to be noted that the taper parameter Ω=0.5 

represents a plate with constant thickness. In this case, the 

dimensionless stress function will alter in a linear manner 

with respect to the radial direction. It is evident from Fig. 

4, that the present results are in good agreement with the 

results reported by Wang et al. [31]. 

 

 

 
(a) 

 

 
(b) 

Fig. 4: Variations of dimensionless stress function against 

dimensionless radial coordinate for different values of the taper 

parameter Ω: (a) linear thickness variation; (b) parabolic 

thickness variation 

 

It can be also inferred from the depicted curves of Fig. 4 

that the variations of f for high taper parameters such as 

Ω=1 show considerable deviation from corresponding 

values for the plate with constant thickness (i.e. Ω = 0.5). 

Thus, high errors may occur if a constant stress 

distribution is considered for highly tapered circular 

plates. 
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For validating the stability results obtained by 

utilizing pseudo-spectral method, the buckling analysis of 

a homogeneous circular plate with constant thickness was 

also investigated. The obtained results are compared with 

the results of Wang et al. [32] using Rayleigh-Ritz 

method, Rajo and Rao [33] using finite element method, 

Ozakca et al. [9] by utilizing finite element method, and 

Eskandari-Jam et al. [34] using analytical solution. The 

results of these comparisons are tabulated in Table 1. It 

can be observed that the presented method is highly 

accurate. 

With regard to the results of Table 1, it can be stated 

that the buckling parameter reduces when the plate side 

ratio h0/b increases. The main reason for this 

phenomenon is the shear deformation effect. By 

increasing h0/b, the shear deformation effect in the 

circular plate increases significantly. Such an outcome 

cannot be observed in the results of Eskandari-Jam et el. 

[34] which is based on the classical Kirchhoff plate 

theory. Indeed, the classical Kirchhoff plate theory 

estimates the value of critical buckling compression more 

than its real value, and as the thickness increases, such 

error becomes more evident. 

After investigating the accuracy of the present model 

for the stability analysis of circular plates with constant 

thickness, the buckling analysis of circular plates with 

variable thickness was also examined. The results for the 

plates with simply supported and clamped edges are 

depicted in Figs. 5 and 6, respectively.  In these figures, 

two different patterns are considered for the thickness 

variation of the plate: linear and parabolic pattern. The 

results are presented for various values of side ratio h0/b. 

The results of the present research with side ratio h0/b 

=0.001 are comparable with the results reported by Wang 

et al. [31]. 

 

Table 1. Comparison study of the buckling parameter   for homogenous circular plates with constant thickness 

Boundary 

condition 

 h0/b 

0.001 0.01 0.05 0.1 0.2 

Clamped 

Present  14.6819 14.6758 14.5296 14.0909 12.5724 

Wang et al. [32] 14.6819 14.6759    14.5296 14.0909 12.5725 

Raju and Rao [33] 14.6825 - 14.5299 14.0910 12.5725 

Ozakca et al. [9] 14.6819 14.6746 14.5014 13.9885 12.2843 

Eskandari Jam et al. [34] 14.6819 14.6819 14.6819 14.6819 14.6819 

Simply 

supported 

Present  4.1978 4.1973 4.1852 4.1480 4.0056 

Wang et al. [32] 4.1978 4.1973 4.1853 4.1480 4.0056 

Raju and Rao [33] 4.1978 - 4.1852 4.1481 4.0056 

Ozakca et al. [9] 4.1978 4.1972 4.1844 4.1448 3.9938 

Eskandari Jam et al. [34] 4.1978 4.1978 4.1978 4.1978 4.1978 

 

 

It is seen that the agreement between present results and 

those results reported by Wang et al. [31] is outstanding. 

It can also be deduced from these depicted results that by 

increasing the side ratio, the buckling parameter of the 

plate decreases due to the shear deformation effect. 
 

 
(a) 

 

 

 

 
(b) 

Fig. 5:  Buckling load factor  with respect to the taper 

parameter  for the clamped plates: (a) linear taper; (b) 

parabolic taper 
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(a) 

 

 
(b) 

Fig. 6: Buckling load factor  with respect to the taper parameter  for simply supported plates: (a) linear taper; (b) parabolic taper 

 

  
Table 2. Optimal values of the taper parameter  and the corresponding buckling load factor  for homogenous circular plates 

   Wang et al. 

[31] 

Present 

   h0/b h0/b 

Boundary 

condition 

Thickness 

variations 
 0.001 0.001 0.05 0.1 0.15 0.2 

Clamped 

Linear 
opt 0.374 0.374 0.374 0.377 0.382 0.387 

opt 15.2973 15.2978 15.1283 14.6417 13.8975 12.9755 

Parabolic 
opt 0.446 0.447 0.447 0.447 0.447 0.448 

opt 14.8335 14.8337 14.6787 14.2325 13.5462 12.6893 

Simply 

supported 

Linear 
opt 0.210 0.210 0.210 0.214 0.218 0.225 

opt 5.8082 5.8062 5.7717 5.6694 5.5080 5.2994 

Parabolic 
opt 0.197 0.198 0.199 0.204 0.211 0.220 

opt 6.0807 6.0894 6.0312 5.9090 5.7187 5.4766 

 

By observing Figs. 5 and 6, it can be deduced that there is 

an optimal value for the taper parameter Ω, wherein the 

value of buckling parameter is maximum. The optimal 

taper parameter Ω as well as the corresponding buckling 

parameter  are presented in Table 2 for different values 

of the side ratio h0/b. In this table, the optimal values 

obtained by Wang et al. [31] are also shown. Note that 

the results of the present research with side ratio 

h0/b=0.001 are comparable with the results of reference 

[31]. As stated previously, the difference between 

Kirchhoff (classic) plate theory and Mindlin (first-order) 

shear deformation plate theory increases when the side 

ratio of the plate increases. 

 

4.2 Bimorph FGM Plates 

In this section, the buckling behavior of bimorph FGM 

circular plates with variable thickness under uniform 

radial compression is assessed and the numerical results 

are presented. The assumed FGMs of the present example 

is a combination of Aluminum (Al), as the metal and 

Zirconia (ZrO2), as the ceramic. The mechanical 

properties of Aluminum and Zirconia are presented in 

Table 3. 

 
Table 3.  Properties of FGM ingredients 

Material Modulus of Elasticity 

(Gpa) 

Poisson's ratio 

Aluminum 70 0.333 

Zirconia 151 0.3 

 

Figs. 7-10 illustrate the relation between buckling 

parameter λ and the volume fraction index N for various 

values of the taper parameter Ω. The depicted graphs of 

Figs. 7 and 8 are corresponding to the clamped plates 

while the graphs of Figs. 9 and 10 are corresponding to 

the simply supported plates. The side ratio of the plates is 

assumed to be h0/b=0.06. Both the linear and parabolic 

patterns are assumed for the thickness variation of the 

plates. It is observed that by increasing the volume 

fraction index, the buckling parameter of the plate 

increases. Such increase and changes are due to the fact 

that, as the volume fraction index increases, the ceramic 

content of the plate increases. Since the stiffness of the 

ceramic is higher than metal, the total stiffness of the 
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plate will increase and the resistance of plate against the 

buckling will increase consequently. It was noticed that 

as the volume fraction index increases, the buckling 

parameter increases in a very fast pace. However, this 

trend for the volume fraction index with values higher 

than 5 is much lower.  

 

 
Fig. 7: Variations of the buckling parameter with respect to the 

volume fraction index for different values of taper parameter- 

clamped plates with linear variations of thickness 

 

 
Fig. 8: Variations of the buckling parameter with respect to the 

volume fraction index for different values of taper parameter- 

clamped plates with parabolic variations of thickness 

 

 
Fig. 9: Variations of the buckling parameter with respect to the 

volume fraction index for different values of taper parameter- 

simply supported plates with linear variations of thickness 

 

 
Fig. 10: Variations of the buckling parameter with respect to the 

volume fraction index for different values of taper parameter- 

simply supported plates with parabolic variations of thickness 

 

It is evident from Fig. 7 that when the taper parameter 

increases from 0.1 to 0.374, the buckling parameter 

increases. However, the buckling parameter decreases as 

the taper parameter increases from 0.374 to 0.6. The 

maximum value of the buckling parameter for the 

clamped bimorph FGMs plate with linear thickness 

variation is achieved when Ω is equals to 0.374 and the 

volume fraction index is higher than 5. Regarding Fig. 8, 

as the taper parameter increases from 0.1 to 0.447, the 

buckling parameter increases. On the other hand, the 

buckling parameter λ decreases when the taper parameter 

Ω increases from 0.447 to 0.6. The maximum value of the 

buckling parameter for the clamped bimorph FGMs plate 

with parabolic thickness variation is achieved when Ω is 

equals to 0.45 and the volume fraction index is higher 

than 5.  

It is evident from Fig. 9 that when the taper parameter 

increases from 0.1 to 0.211, the buckling parameter 

increases. However, the buckling parameter decreases as 

the taper parameter increases from 0.211 to 0.6. For the 

taper parameters Ω=0.4, Ω=0.1, the buckling parameters 

are approximately the same. The maximum value of the 

buckling parameter for the simply supported bimorph 

FGMs plate with linear variation of thickness is achieved 

when Ω is equal to 0.211 and the volume fraction index is 

higher than 5. Concerning the Fig. 10, as the taper 

parameter increases from 0.1 to 0.2, the buckling 

parameter increases. On the other hand, the buckling 

parameter λ decreases when the taper parameter Ω 

increases from 0.2 to 0.6. The maximum value of the 

buckling parameter for the simply supported bimorph 

FGMs plate with linear thickness variation is achieved 

when Ω is equal to 0.2 and the volume fraction index is 

higher than 5.  

Variations of the buckling parameter λ against the 

volume fraction index N is shown in Figs. 11-12 for 

various values of the side ratio h0/b. The results are 

presented for the bimorph FGM plates with Ω=0.5. The 

depicted graphs of Fig. 11 are corresponding to the 

clamped plates while the graphs of Fig. 12 are 

corresponding to the simply supported plates. It can be 
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observed from these figures that the buckling parameter 

of the plate decreases as the side ratio h0/b increases. It 

can also be seen that the increase of the volume fraction 

index from 0 to 5 leads to the considerable increase of the 

buckling parameter. By increasing the volume fraction 

index more than 5, the buckling parameter of the plate 

approaches the buckling capacity of a fully ceramic plate.  

 

 
Fig. 11: Variations of the buckling parameter against the 

volume fraction index for different values of the side ratio - 

clamped plates 

 

 
Fig. 12: Variations of the buckling parameter against the 

volume fraction index for different values of the side ratio -

simply supported plates 

 

5. Conclusions 

In the present study, the buckling behavior of circular 

bimorph FGM plates with variable thickness under 

mechanical loading was investigated. To reach this aim, 

von Karman's assumptions for geometric nonlinear 

strains as well as the first-order shear deformation plate 

theory were employed. A uniform radial form was 

assumed for the applied compressive load. Moreover, two 

types of variable thickness FGM plates as well as their 

fabrication processes were suggested. Except for the 

Poisson's ratio, all other materials properties of the plate 

are assumed to be symmetric about its mid-plane. The 

middle plane and the outside plane of the FGMs plate are 

assumed to be made of pure metal and pure ceramic, 

respectively. The material properties change in the 

thickness direction according to the power law. Shooting 

method was used for solving the membrane equation. 

This equation is required for determining the distributions 

of the pre-buckling force in the radial direction. The 

stability equations were numerically solved using pseudo-

spectral method. In order to assess the critical buckling 

load, Chebyshev polynomials were used as the basis 

function. The numerical results were presented for both 

simply supported and clamped plates. Both the linear and 

parabolic patterns were considered for representing the 

thickness variations of the FGM plates. As this problem 

has not been investigated in previous researches, the 

obtained results for homogenous plates were employed 

for the validation of the proposed formulation. The 

comparisons proved the accuracy of the present results. 

The present research exhibited that the utilization of the 

pseudo-spectral method based on Chebyshev basis 

functions is a suitable solution for solving the buckling 

problem of circular plates with variable thickness. Even 

for plates with high thickness variations, this method 

yields converged results. The other main findings of the 

present research are summarized as follows: 

 In order to analyze the buckling of the plates, it is 

essential to solve the membrane equations for finding 

the pre-buckling load. In the plates with variable 

thickness, the membrane equation is a differential 

equation with variable coefficient, and the best 

solution strategy is the use of numerical methods. In 

this paper, the membrane equation was solved using 

the shooting method. It utilizes the Runge-Kutta 

fourth order method and Newton-Raphson correction 

method simultaneously. Considering the high 

accuracy of the obtained results and the simplicity of 

the presented method, the use of the shooting method 

for solving the membrane equation of plates with 

variable thickness is highly recommended.  

 By investigating the effect of the taper parameter on 

the buckling load of homogeneous plates subjected to 

uniform radial compression, it was found that there 

exists an optimal value for the taper parameter Ω 

wherein the buckling load becomes maximum. For 

both the linear and parabolic thickness variations, the 

optimal values of the taper parameter and the 

corresponding buckling loads were presented for the 

simply support and clamped plates. These values were 

also compared with those obtained by pervious 

researches.  

 By increasing of the ratio of thickness to lateral 

dimension (side ratio), the buckling parameter of the 

bimorph FGM circular plates reduces.  

 By increasing of the volume fraction index, the 

ceramic volume fraction of the plate increases. Since 

the ceramic is more rigid than metal, the resistance of 

the plate against the mechanical buckling increases 

consequently.  

 The resistance of clamped bimorph FGM plates 

against the mechanical buckling is three times the 

resistance of simply supported ones. Similar results 

were detected for the plates made of homogenous 

materials. 
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