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Abstract: 

The selection of a suitable numerical method to evaluate the dynamic behavior of structures, 

especially in nonlinear cases, is an important task in practice. Accordingly, the purpose of this 

study is to demonstrate the numerical features of a new single-step type of the Modified Energy 

Method (MEM) to compute the dynamic response of structural systems. A comprehensive 

formulation of this energy-based time integration scheme to incorporate the general nonlinear 

behavior in MDOF systems is presented for the first time ever in this paper. After discussing the 

stability and accuracy of the proposed time-stepping integration procedure, five applicable 

numerical examples in structural dynamics and earthquake engineering practices involving the 

various hysteretic behaviors and the effects of consistent mass and non-classical damping 

matrices are examined by the presented technique. In each case, the relevant comparisons are 

given in accordance to other available methods (e.g., Newmark and Runge-Kutta). Overall, the 

results indicate that the MEM yields a better accuracy than the 2nd Runge-Kutta approach. 

Furthermore, the distinguishing feature of the proposed method is to provide information about 

choosing the optimal size of the time intervals, especially in the nonlinear analyzes, which is not 

achievable in other applicable approaches.

 

1. Introduction 

Although nonlinear dynamics analysis disseminate a 

more realistic behavior of the structure to the analyst; but 

it is inherently complex since there is no closed-form 

solution in most cases. One of the main drawbacks in 

analyzing theses type of problems is the lack of 

application of the superposition principle that is widely 

used in computing the response of linear systems. For 

example, many of the concepts in the dynamics of linear 

structures such as the usage of Duhamel integrals, integral 

transform maps (e.g., Laplace, Fourier), as well as the 

popular modal analysis method cannot be applied when 

we are dealing with the dynamics related problems within 

nonlinear terms. Consequently, for the practical 

engineering works, numerical methods are used to 

approximate the exact response of a nonlinear initial value 

problem (IVP). Undoubtedly, the most important factor in 

utilizing a numerical method is its efficiency.  
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The efficacy of a numerical method in the structural 

dynamics analysis can be studied by some factors such as 

comprehensiveness, stability, accuracy, computational 

cost, simple computer implementations, needlessness in 

defining the additional parameters, self-starting, and so 

on. Nevertheless, it has to be noted that each one of the 

current methods has its advantages and disadvantages.  

Direct time integration methods (DTIMs) are the most 

commonly used in practice to determine the dynamic 

response of structures. The constant acceleration 

(trapezoidal rule), linear acceleration, and central 

difference methods are three traditional techniques in this 

context (Bathe 2014[3]). Historically, Houbolt (1950[14]) 

presented a three-step time integration scheme to analyze 

the forced vibration in aerospace structures. The most 

significant disadvantage of this method is its non-self-

starting nature, and it has also been proven that the 

method is less accurate than other integration techniques 

(Wen et al. 2017[35]). Newmark (1959[27]) also 

proposed a numerical time integration method by 
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introducing the two parameters γ and β in order to adjust 

the stability and accuracy of the solution. 

However, in the case of the linear acceleration, the 

method was conditionally stable; hence, Wilson et al. 

(1973[36]), with defining an additional integral 

parameter, denoted as θ, introduced another numerical 

technique to make the linear acceleration method of 

Newmark unconditionally stable. Collocation methods 

that are basically the combination of the Wilson and 

Newmark methods, with three additional parameters (γ, β, 

θ), are of another category that were invented later (Kolay 

& Ricles, 2014[21]). Subsequently, Hilber et al. 

(1977[13]) proposed the HHT-α method in order to have 

a controllable numerical damping method, where the 

kinematic relations are the same, as the Newark method. 

Chung and Hulbert (1993[8]), by generalizing the HHT 

method, were seeking an optimal numerical damping 

control to eliminate the unwanted frequencies in the 

response of a dynamic system.  

   In the recent years, many DTIMs have also been 

developed based on the concepts of time finite element 

approach. For example, Shojaee et al. (2015[32]) 

developed an unconditionally stable implicit form, by 

modifying a conditionally stable explicit method based on 

the quartic B-spline polynomials which were used in Ref. 

(Rostami et al. 2012[31]). Zhang et al. (2015[37]) work 

on a composite time integration method based on the 

three-point Forward Euler formula with a generalized 

central differential formulation for nonlinear analysis of 

structures. In another study carried out by Cilsalar and 

Aydin (2016[9]) by employing the weighted residuals 

approach in violation of the assumption of linear 

acceleration in their time-integration method, investigated 

the effect of parabolic and cubic variations of acceleration 

on the analysis of nonlinear dynamic problems. 

Furthermore, Kim and Choi (2016[19];2018[20]) 

introduced a new implicit technique based on the 

weighted residual method (WRM) by introducing one free 

parameter that controls algorithmic dissipation. They 

reported that their algorithm is more accurate compared 

to the Bathe method. In general, in these type of 

approaches, and for the stability conditions there is no 

general condition to guarantee the stability of the method 

of integration in nonlinear problems (Park 1975[28];  

Zienkiewicz et al. 2014[38];  Belytschko et al. 2014[6]).  

   Generally, all DTIMs are conducting based on the 

solution of the second-order equation of motion. 

However, the energy balance equations can be considered 

in the evaluation of the dynamic response of structural 

systems. For example, Kuhl and Crisfield (1999[23]) have 

studied the energy conservation algorithms in nonlinear 

dynamics of structures; while, Bathe (2007[1]) reported 

the loss of energy conservation in some nonlinear 

dynamic analysis using the Newark method. Farhat et al. 

(2015[11]) worked on the Structure‐preserving, stability, 

and accuracy properties of the energy‐conserving 

sampling and weighting method for the hyper reduction 

of nonlinear finite element dynamic models. Besides, the 

energy balance method (EBM) that is used to determine 

the approximate response of nonlinear oscillators can be 

mentioned in this regard (Bayat et al. 2016[5]). He             

(2002[12]) thoroughly investigated the usage of the 

Hamilton principle to calculate the frequency of nonlinear 

oscillators through some numerical problems. In that 

regard, Khan and Mirzabeigy (2014[18]) introduced the 

improved energy balance method (IEBM) in order to 

increase the accuracy of the EBM in the analysis of 

conservative nonlinear oscillators. Indeed, they used an 

extended trial function based on Galerkin’s method in 

their work. In another similar study, for achieving a 

higher-order approximation of the solution of such 

problems Razzak and Rahman (2015[29]), by defining a 

higher-order trial function studied some strongly 

nonlinear oscillator systems. Furthermore, Navarro and 

Cveticanin (2016[26]) also tried to calculate the 

amplitude-frequency relationship by means of the 

Hamiltonian principle regarding oscillators with the sum 

of non-integer order nonlinearities. The solution of the 

nonlinear differential equation was based on the 

assumption of a trigonometric function with an unknown 

frequency, and the frequency equation is obtained by 

inserting the Hamiltonian’s derivative equal to zero. The 

obtained results were also verified by analytical solutions 

and the development of an error estimation method on the 

basis of the relationship between the average residual 

function and the total energy of the system. 

    Overall, by reviewing the preceding literature, it can be 

seen that for the direct time integration methods, there is 

a need to select and adjust the additional integration 

parameters (β,γ,θ,α). The recommended values for 

selecting these parameters are based on the very simple 

assumptions, such as the case of linear and free vibration. 

The energy balance methods also create very complex 

mathematical expressions with many limitations 

especially their limited application for SDOF systems. In 

other words, these approaches can only be useful in 

finding the approximated natural frequency of some 

nonlinear oscillators; so, the time-history response of a 

general nonlinear structure cannot be obtained via these 

methods. Moreover, none of the DTIMs and EBMs can 

provide the analyst with the appropriate information about 

the choice of the appropriate size of time steps to analyze 

a nonlinear problem. Accordingly, this paper aims to 

present a comprehensive form of an energy-based time 

integration method, denoted as Modified Energy Method 

(MEM), to overcome the aforementioned drawbacks. 
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This method with the quadratic form is able to consider 

the effect of loading, the system’s damping, as well as the 

duration of the analysis on the selection of the optimum 

Δt. It is to be noted that the basic idea of the presented 

method is initially stated in (Jalili Sadr Abad et al. 

2017[16]) as a composite and iterative formulation which 

was based on the simultaneous usage of force and 

equilibrium equations. This method was named as the 

Modified Energy Method (MEM) applied to the SDOF 

systems with different nonlinearities. Subsequently, this 

approach is generalized to the linear analysis of the shear-

frames as one of the practical MDOF structures, where a 

mathematical technique (EDV) was for the first time 

proposed in (Jalili Sadr Abad et al. 2018[17]) to 

numerically solve the set of quadratic and coupled 

discretized equations.  

   In the current work, in order to demonstrate the 

comprehensiveness of the method for analyzing various 

problems in the dynamics of structures, a new single-step 

form for MEM is introduced. Employing different first-

order integration techniques (forward- and backward-

Euler, as well as trapezoidal rule), stability and accuracy 

analysis of the method, considering the non-

diagonal/consistent mass matrix and non-proportional 

damping effects, as well as the analysis of nonlinear 

MDOF systems, together with discussion on choosing the 

optimum size of time step in a nonlinear analysis, are 

some of the novelties for the present study compared to 

the previous works. 

 

2. Different force-based methods of analysis 

in structural dynamics  

The following general form can express the second-order 

differential equation of motion of an oscillator.  

( , )mu cu fs u u F    (1) 

where, m, c, fS, and F are respectively the mass, damping, 

nonlinear restoring force, and external force of the system. 

u also denotes the displacement of the vibrating system, 

and the dot represents the time derivative. 

Generally, there are two different approaches in practice 

and in the numerical solution of this type of nonlinear 

equation. For the first category, an incremental form of 

the equation of motion is used, and then a direct 

integration method (e.g., Newmark) is used along with an 

iterative method like Newton-Raphson. Alternatively, by 

rewriting Eq. (1) in a system of first-order equations 

(state-space form), the time-history response of the 

system can

 be determined using one of the commonly used first-

order numerical integrating techniques such as Runge-

Kutta method. In the following section, each of these two 

methods is illustrated in more details. 

2.1. Direct time integration method (incremental 

force equilibrium equation) 

If we subtract the force equilibrium of the system at time 

t from the same equation at time t+∆t, we will get the 

following incremental force equilibrium. Note that m and 

c are assumed to be constants throughout this study. 

      m u c u fs F  (2) 

In the step-by-step time integrating methods, by defining 

an instantaneous stiffness, kt, the stiffness of the system 

during the analysis will be updated. Hence, the variation 

of restoring force between two consecutive time steps is 

given by  

.  
t

fs k u  (3) 

In these cases, to obtain the response history, the time 

domain is divided into small intervals, Δt. Then, in each 

of these time intervals, by assuming constant dynamic 

properties of the structure, a suitable kinematic 

assumption must be made (such as linear or constant 

acceleration) to compute the system's response. In the 

following, we will focus on the family of Newark methods 

that are widely used in practice. In this situation, 

displacement and velocity at time t=tj+1, respectively, are 

expressed by Eqns. (4) and (5). 

2

1 1
[(1 2 ) 2 ]

2
 


     

j j j j j

t
u u tu u u   (4) 

11
[(1 ) ]


    

j j jj
u u t u u   (5) 

in which β and γ are the acceleration coefficients in the 

calculation of velocity and displacement. Table 1 

represents the different forms of Newmark's integration 

methods for various combinations of β and γ, where Tmin 

denotes the fundamental period of the vibrational system. 

Here, it should be mentioned that the stability condition 

given in Table 1 is only valid for linear systems and there 

is no proven stability condition for nonlinear analyses for 

the time integration methods. As already stated, one of the 

problems that we are faced in practice with methods such 

as Newmark, especially in nonlinear analyzes, is the 

choice of appropriate values or the calibration of these 

integral constants. 
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Table 1. Newmark family of time integration methods (Kolay 

& Ricles 2016[22])(Soroushian, 2017[33]) 

 

2.2. State-Space Approach (First-Order System of 

Differential Equations) 

By introducing a state-vector [x1 , x2]T where x1 and x2 are 

the displacement and velocity of the oscillator, the 

second-order differential equation of motion, Eq.(1), can 

be reduced into a first-order system as follows. 

1 2

1

2 2 1 2
[ ( , )

x x

x m F cx fs x x



 

   
   
   

 (6) 

In general, in the case of n-DOF systems, 2n first-order 

differential equations will be obtained by transforming 

from n second-order differential equations of motion. 

These equations can be expressed in a vector form as 

below. 

( , )tx f x
 

 (7) 

Most of the times, in order to solve these forms of first-

order vector equations, after the discretization in time, the 

state of the system at the current time xj+1 is obtained from 

the system’s state at time tj, plus some increment, dx, i.e. 

1
x x x


 

j j
d  (8) 

As a favorite technique, for the second-order Range-Kutta 

(RK2) method, one can write 

3

[ ( , ) ( , . ( , ))] ( )
2

x f f fx x x


       
j j j j j j

t
d t t O tt t t  (9) 

Additionally, for the fourth-order Range-Kutta method 

(RK4), we have 

51
[ 2 2 ] ( )

6
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d O t
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t t

t
t t

t t t

     

 


   


   

    

 (10) 

It should be noted that RK2 belongs to single-step time 

integration methods; but, RK4 is a multi-step method that 

uses a sub-step to increase the accuracy of the solution. 

Hence, the RK4 method is more computationally 

expensive than RK2. Generally, here it is worth 

mentioning that the main weak point of these kind of 

methods (viz. state-space approaches) is the incorporation 

with non-diagonal/consistent mass matrices in vibrational 

systems. This point will be elaborated and discussed later. 

 

3. Research methodology 

In the following section, the concepts of the new single-

step form of Modified Energy Method (MEM) are 

illustrated in details. This formulation is first derived for 

SDOF systems; then, it is generalized to involve the 

general nonlinear behavior in an MDOF vibrating system. 

Finally, the stability and accuracy of the proposed 

numerical technique are discussed at the end of this 

section. 

 

3.1. The incremental form of the energy balance 

equation for SDOF systems 

Due to the changes in the dynamic properties of the 

system (e.g., stiffness) during nonlinear analysis, the 

usage of an incremental form of energy balance equations 

is always preferred in practice.  

K D P F
E E E E        (11) 

in which ΔEK, ΔED, ΔEP, and ΔEF denote the variation of 

kinetic, dissipated/damped, potential, and loading 

energies in two consecutive times of tj and tj+1 

respectively.  
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5 1
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2
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2
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2
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h
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Fig. 1: Definition of various types of dynamical forces and 

corresponding energies: (a) Inertia force and kinetic energy; 

(b) Damping force and dissipated energy; (c) Spring force 

and potential energy; (d) External force and loading energy. 

 

According to Figure 1(a), the variation of kinetic energy 

in the system can be written in the following form. 

K I

2 2

j 1 j

j 1 j 1

j j

u u

u

I

u

f mu

udu vdv

E f du mudu

1
m v v

2


 





 

 



   

 
 (12) 

where vj+1 and vj respectively are the velocity of the object 

at times tj+1 and tj.  

By introducing the tangential damping coefficients 

(cj,cj+1) at the beginning and end of the time interval, as 

shown in Figure 1(b), the dissipated energy changes can 

be written using the trapezoidal rule as follows. 

2 2

D D D j 1 j 1 j j

j 1

j 0

u t

u

t
E f du f (v) . v(t) dt [c v c v ]

2
 




       (13) 

Similarly, the variations of potential energy for a 

nonlinear spring can also be written by defining 

instantaneous or tangential stiffness (kj,kj+1) at times tj+1 

and tj as displayed in Figure 1(c). We get, 

2 2

P S j 1 j 1 j j

j 1

j

u

u

1 1
E f du k u k u

2 2
 



     (14) 

Finally, regarding Figure 1(d), the variation of external 

work related to loading is given by Eq.(15) with the use 

of the trapezoidal rule. 

 
F j 1 j 1 j 1 j

j 1 j 1

j j

u t

u t

t
E F(t)du F(t)v(t)dt F v F v

2
  

 


       (15) 

Consequently, by plugging the relations (12)-(15) in 

Eq.(11), the discretized form of the energy balance 

equation for a single-degree-of-freedom system is 

obtained as follows. 

 

2 2 2

j j 1 j j j 1 j j

j 1 j

2 2

j 1 j 1

2

j

1 j1

1

j

m v t [c c v ] k k uv u

t F F

v

v v

 



 

 

      

 

  
 (16) 

Given the state of the system at time t=tj, the above 

quadratic equation has two unknowns parameters 

(vj+1,uj+1); therefore, it is necessary to relate the 

displacement at the current time with a kinematic relation 

to the velocity at the same time. Accordingly, Euler's 

formula might be utilized as follows. 

jj j1 j 1
u t [(1 r)v (r) ]u v


      (17) 

where r is a coefficient as of the range [0,1], which is 

conceptually the participation of the two current and 

former velocities (at the beginning and the end of the 

time-step) for computing the displacement at the current 

time. According to Table 2, different well-known forms 

of first-order time integration schemes can be achieved for 

various values of r. It should be noted that in the next 

sections, by performing different analyzes, the 

appropriate value to have a proper numerical response 

will be examined. 

 
Table 2. Different forms of first-order approximation for three 

values of r 

Forward Euler (r=0) Crank-Nicolson (r=0.5) 
Backward Euler 

(r=1) 

  
 

j 1 j j
u u t .v


    

j 1 j j 1 j
u u 0.5 t (v v )

 
     

j 1 j j 1
u u t .v

 
    

 

Therefore, in order to find the system’s response at time 

tj+1, (uj+1,vj+1), we must simultaneously solve two 

equations with two unknowns derived from the 

combination of equations (16) and (17), that is 
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2
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 (18.a) 

 

jj j1 j 1
u t [(1 r)v (r) ]u v


      

 

(18.b) 

In order to have an explicit form of the equation, 

substituting the second expression into the first one in 

Eq.(18), with some mathematical simplifications, the 

characteristic quadratic equation for vj+1 can be obtained 

as below. 

2

j 1 j 1

2 2

j 1 j 1

2

j 1 j j 1 j j 1

2

j 1 j j j j j j

2 2

j 1 j j 1 j j

Av Bv C 0

A m c t k t r

B 2k t r u 2k t r(1 r)v tF

C (k k )u v [ m v c t v

k t (1 r) v 2k t(1 r)u tF ]

 

 

  



 

  

    

      

      

      

 (19) 

It can be seen from these relationships that the coefficient 

A is only a function of dynamical properties of the system 

(m,c,k) and integrating variables (r,Δt); but, the 

coefficients B and C vary with the state of system in the 
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previous step (uj,vj) and loading function (F), as well. 

Furthermore, an interesting point with regard to Eq.(19) is 

that the Delta (B2-4AC) in this equation must always be a 

non-negative value to avoid creating non-imaginary 

velocities in the analysis procedure; hence, it can provide 

for the analyst a stability condition. For this purpose, the 

value of Δt must be lower than a specific limit, which is 

the function of the dynamic properties, the discrete 

variables, and also the external load. Nevertheless, this 

issue will be discussed later in future sections. 

 

3.2. Detection of the Actual System’s Velocity 

Now assuming B2 > 4AC, solving quadratic Eq.(19) gives 

two roots as follows. 

2

j 1 j 1

(1) ( 2 )

j 1 j 1

B B
Av Bv C 0

2A 2A

v v,
   

     
       (20) 

However, the physical system only has a unique velocity 

at any given time. As a result, the real and spurious 

velocity of the system should be identified at any time. 

For this purpose, one may use the better forces 

equilibrium by estimation of acceleration by Eq.(21), as 

below 

   1 2

j 1 j j 1 j(1) (2)

j 1 j 1

v v v v
a , a

t t

 

 

 
 

   

(21) 

In Eq.(21), two corresponding accelerations (aj+1
(1), aj+1

(2)) 

are assessed from two calculated velocities at time tj+1 

(vj+1
(1), vj+1

(2)) and the velocity of the previous time step 

(vj). 

Then, by checking Eq.(22), the velocity with a better force 

equilibrium is selected as the real velocity of the system 

(vreal). Mathematically,  

(1)

j 1 1 2

real

(1) (1) (1)

1 j 1 j 1 j 1 j 1

( 2) ( 2) ( 2)

2 j 1 j 1 j 1 j 1

(2)

j 1
otherwise

v if f f

v ;

f m a c v k x F

f m a c v k x F

v



   

   







   

   







 

(22) 

Given that the value of Δt is usually very small in practical 

analyzes, a key idea to be utilized here is that by taking 

Δt→0 in Eq.(22) and ignoring other terms against the first 

term, we can achieve an interesting result that can possess 

a physical interpretation. In this situation, Eq.(22) takes 

the form 

   

(1)

j 1 1 2

real

( 2)

j 1

1 2

1 j 1 j 2 j 1 j

;

v if e e

v

v otherwise

e v v , e v v





 





   







 (23) 

In this equation,│vj+1
(1)-vj│and│vj+1

(1)-vj│could express 

the distance between the calculated velocities at the 

current time (tj+1) and the velocity at the preceding time 

step (tj). This technique, which is first introduced in (Jalili 

Sadr Abad et al. 2018[17]) and named as "elimination of 

discontinuous velocities", can certainly increase the speed 

of the computer’s processing in comparison with 

checking the force equilibrium at each time step. On the 

whole, the overall process for performing the proposed 

method is shown in Figure 2. 

 

 
Fig. 2: Flowchart for implementing the proposed method 

 

3.3. Generalizing the proposed method for nonlinear 

MDOF systems 

A numerical method should be comprehensive, i.e., a 

method with fewer restrictions is more popular in 

practice. For this reason, after presenting the concepts of 

the modified energy method in the previous section for 

SDOF systems, here the presented technique will be 

demonstrated for MDOF structures with general 

nonlinear behavior. Now, we would like to consider an    

n-DOF structural system with the displacement vector 

u═[u1,u2,…un]T. The matrix differential equation of 

motion, in this case, is assumed to be expressed as: 

t
I D S

f (u) + f (u) + f (u) = F( )  (24) 

In Eq.(24), fD and fS respectively are two general 

nonlinear functions regarding velocity and displacement 

vectors; while, fI and F(t) represent the inertial and 

external excitation force vectors.  

By introducing the tangential damping, c(t), and stiffness, 

k(t), matrices; and, in a similar way for SDOF systems, 

the characteristic discretized equation as a function of 

velocities at the current time (tj+1) is given by  
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2

i i ( j 1) i i ( j 1) i
A v B v C 0 , i 1 : n

 
     (25) 

where the subscript i denotes the number of DOF.  

To avoid expressing the massive mathematical relations, 

the coefficients in the quadratic Eq.(25) along with the 

mathematical proof of how they are obtained are given in 

Appendix 1. Further, a step-by-step algorithm for 

computer implementation of the modified energy method 

(MEM) for a general nonlinear n-DOF system is provided 

in Table 3. 

 

Table 3. Step-by-step algorithm for computer implementation 

of the modified energy method (MEM) 

A) Inputs 

1. Form mass M, damping C(t), and  stiffness K(t) matrices 

2. Determine loading vector F(t) and duration of the analysis td 

3. Select a time-step Δt and integration technique r 

4. Impose the initial condition u0 , v0 

B) Preliminary calculation  

5. Compute two integration constants; a1 = rΔt , a2 = (1- r)Δt  

C) Step-by-step integration tj=jΔt (j=1,2,…, td /Δt)  

6. Advance in the time domain; tj+1 = tj +Δt 

7. Form the velocity equations, regardless of the coupling terms; 

Ai (vi(j+1))2 + Bi (vi(j+1)) + Ci = 0   ,    i=1:n 

8. Solve quadratic equations and detecting the actual system’s 

velocities  

9. Calculation of coupling terms and modification of 

coefficients in step 7  

10. Repeat step 7 through 9 to achieve the convergence 

11. Save the last calculated Delta of quadratic equations  

12. Determine the displacement of the system in the current time 

using Euler's formula; uj+1 = uj + a1.vj+1 + a2.vj 

13. Increase j and go to step 6 to reach the end of the analysis 

duration 

D) Control of the calculations (determine the optimum time 

interval) 

14. Stability control of the responses from the history of Delta 

and change the values of the parameters in step 3  

 

3.4. Accuracy and Stability Analysis 

This part deals with the analysis of the effect of choosing 

the size of the time step on the accuracy and stability of 

the proposed method. In this regard, according to (Bathe 

& Cimento 1980[2]; Bathe 2008[4]) these numerical 

features will be investigated through analyzing the free 

vibration response of a simple SDOF system shown in 

Figure 3. 

 
Fig. 3: A conservative mass-spring system to analyze the 

accuracy and stability of the numerical methods 

 

 

 

3.4.1. Stability analysis of the proposed method 

Regarding Figure 3, Eq.(18) can be simplified as below 
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Now by defining the two variables, λ = ω.Δt and                           

β = uj / (Δt.vj), one can combine these two equations as  

(1 + 𝑟2𝜆2)𝑣𝑗+1
2 + (𝑣𝑗)(2𝑟𝜆2)(𝜂 + 1 − 𝑟)𝑣𝑗+1 +

𝑣𝑗
2(𝜆2(1 − 𝑟)2 − 1 + 2𝜆2(1 − 𝑟)𝜂) = 0   

(27) 

As mentioned earlier, in order to avoid the creation of the 

imaginary velocities in the analysis, Delta in Eq.(27) must 

always have a non-negative value; that is, 

(r, , ) 0   
 (28) 

Utilizing the sign function (Sign) in this case can be useful 

in finding the stability region. So, by plotting the function 

of Sign(Δ) for three values of r=0, r=0.5, r=1 in Figure 

4,5. 

 

 

 
Fig. 4: The sign of Delta in the stability analysis of the 

proposed method 
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Fig. 5: Stability region in the λ-β plane 

 

According to Figure 5, it can be seen that for the value of 

r = 0, the proposed method is stable regardless of the 

values of the β parameter. The stability condition in this 

case as a function of the natural period of the system, T, 

is given by 

. 2 3.2
0.509 0.509

2

3.2
cr

T t
t T

T

t
   

    



    (29) 

Moreover, for the other two modes (r = 0.5 and r = 1), 

which have a nearly sign function diagram, in contrast to 

the previous state (r = 0), where the stability region does 

not depend on the value of β, the positive sign of Delta 

cannot be guaranteed for a specified range of λ. As a 

result, it can be concluded from observing the results (for 

the three values for r) that the case r = 0 shows a more 

stable region and can be a better choice than the other two 

circumstances. 

 

3.4.2. Accuracy analysis of the proposed method 

According to an approach utilized in the literature (e.g., 

refer to (Bathe, 2014[3]) once again, the free-undamped 

response of a linear vibrating system (Figure 3) is 

employed in this study. In order to incorporate with unit 

values for the amplitude and period of vibration (Aexact=1, 

Texact=1), the dynamical properties in the analysis are 

selected as below 

2

0 0
m 1, k 4 , u 1, v 0      (30) 

As we know, the analytical or exact solution of this 

vibrational problem is u(t) = Cos2πt; while, the numerical 

response differs from this function, as shown in Figure 6 

for three different values of r. 

 
 

 
 

 
Fig. 6: Accuracy analysis of the proposed method 

 for three value of r = 0, 0.5, 1 

First, it should be noted that the value of r = 0.01 is chosen 

as the representative of the value of r = 0 (since otherwise, 

the method will not be self-started). The most important 

point that can be seen from Figure 6 is that the value of              

r = 0.01 has a better result than the other two cases. As an 

instance, for the values of r = 1 and especially r = 0.5, the 

calculated velocity of the numerical method has been zero 

in the significant range of the analysis period and has not 

changed, which does not correspond to the physical nature 

of a vibrational problem. 

In the following, two relative parameters of the 

periodicity error (εT), as well as the amplitude error (εA), 

are defined to evaluate the accuracy. 
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 (31) 

In the above expressions, ANum and TNum (numerical 

amplitude and period) are functions of the selected time-

step (Δt). According to Figure 7 for r = 0.01, the 

numerical errors of the method, including the percentage 

of amplitude and periodicity error, along with the 
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numerical damping, are compared with the 2nd order 

Range-Kutta method (RK2). 

 
(a) 

 

 
(b) 

 

 
(c) 

Fig. 7: The comparison between the accuracy of the presented 

method vs. 2nd Runge-Kutta technique: (a) periodicity error;    

(b) amplitude error; (c) numerical damping 

 
As shown in Figure 7(a), the RK2 method does not have 

the periodicity error; nevertheless, the energy method 

produces the numerical error in the calculation of the 

vibrational period of the system as increasing the ratio of 

Δt/T. For example, for the ratios of Δt/T = 0.01, 0.05, and 

0.1 the value of these errors, respectively, are about 3, 15 

and 30%. Furthermore, in Figure 7(b), the relative 

amplitude error is compared for two MEM and RK2 

methods for different values of Δt/T. Contrary to the 

former case, it is observed that these errors in the 

vibrational amplitude are much lower than the RK2 

method when using the energy method. Eventually, the 

percentages of artificial damping that the energy method 

produces in numerical analysis for different values of Δt/T 

is compared to the RK2 method in Figure 7(c). 

Accordingly, for the ratio of Δt/T = 0.1, the proposed 

method has introduced artificial damping of about 10% in 

the calculated response of the system, while this value for 

the RK2 method is nearly 25%. 

4. Results and Discussion 

In this section, some applicable examples in the structural 

and earthquake engineering are analyzed by the proposed 

numerical technique. The numerical results obtained by 

the presented method are compared with other 

conventional numerical approaches such as Newmark and 

Runge-Kutta techniques to reveal the computational 

aspects of this method. It shall be pointed out that all 

problems in this section have been implemented in the 

MATLAB environment. 

 

4.1. A One-story building frame with elasto-plastic 

behavior under blast loading 

As one of the most common nonlinear problems in 

earthquake engineering, an SDOF building model, 

according to Figure 8(a), is considered as the first 

example, taken from (Clough & Penzien 2013[10]). The 

system whose hysteretic behavior is elastic-perfectly 

plastic is subjected to a lateral blast loading as displayed 

in Figure 8(b). Other properties assumed in this problem 

are given in Table 4. 

 

 
(a) 

 

 
(b) 

Fig. 8: A one-story building model: (a) configuration of the 

frame; (b) representation of lateral blast load 

 

Table 4. The assumed properties for analyzing Example 4.1. 

Type of 

parameters 
Quantity symbol Value 

System’s 

characteristics 

Mass m 0.2 Kips.in-1.s2 

Viscous Damping ratio ζ 8.7 % 

Elastic stiffness k1 12.35* Kips.in-1 

Loading Blast load F(t) Figure 8(b) 

Nonlinear 

 behavior 

post-yield to pre-yield 

stiffness 
α 0 

Yield force Fy 15 Kips 

Analysis Duration td 2 s 

*24EIC/L3= (24×(3×104) ×100)/(15×12)3 

For the problem at hand, the stiffness of the system, kj, is 

not constant during the analysis. Based on Table 4, this 

parameter at time t=tj, will take either one of the two 
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initial/elastic stiffness (k1) or post-yielding stiffness (k2) 

according to Eq.(32). 

 

2

1

0
S y S

j

j j
k f F df

k
if and

oth isek erw






  

(32) 

In this expression, the parameter fS j is the restoring force 

at time t=tj, and the parameter dfS j denotes the difference 

of this force for current and previous time steps; i.e.,        

dfS j =│ fS j│-│ fS (j-1)│. The remaining parameters are also 

defined in Table 4. Due to nonlinear nature of this 

problem, at each time step, the value of fS j is first estimated 

by the last calculated spring force (fS j ≈ fS (j-1)), then it shall 

be refined by the values of kj and uj+1 after computing the 

state of the system at time tj+1.  

     For this example, in order to better familiarize the 

reader with the presented methodology, at first, the 

structure is analyzed with linear behavior (considering the 

elastic stiffness), and then an elastoplastic analysis is 

carried out. For the first case, in the beginning, to find the 

answer to the question, what values of the r parameter can 

have a closer response to the reference solution? Let us 

draw the results from the three values of r = 0, 0.5, 1 

versus the linear response of the system in Figure 9. It is 

to be emphasized once again that according to Eq.(18) the 

presented method for such problems with the zero initial 

condition and F(0)=0 is not self-starting; so, to overcome 

to this issue a small value near zero (here, r=0.01) is 

utilized as a representative of the forward-Euler method 

(r=0). Note that the fourth-order Runge-Kutta along with 

Newmark (linear Acc.) methods are selected to obtain the 

reference solution of the system. In this situation, a very 

small size of time-step (i.e., Δt = 10-4s) is used to ensure 

the approach entirely the numerical results to the exact 

solution of the system. It should be noted that the obtained 

response is also controlled with the linear response 

provided in Ref. (Clough & Penzien 2013[10]).  

   From Figure 9, it is proven that the mode r=0.01, which 

corresponds to the FE state, yields the best results in 

comparison with the other two cases (i.e., trapezoidal and 

BE modes).  

 

 

 
Fig. 9: The displacement response of the linear system 

 for various values of parameters r and Δt 

 

After estimating the proper value for r, to reveal one of 

the unique features of the proposed energy method, we 

will calculate the optimal time interval for the analysis. 

Indeed, with plotting the time history of the Delta 

parameter, to prevent the creation of the imaginary 

velocities in the analysis procedure, these graphs should 

lie above the horizontal axis of time. In this regard, the 

obtained results are depicted for the different values of Δt 

in   Figure 10 for the case of the FE integration scheme. 

 

 
Fig. 10: The time-history of Delta in the case of r = 0  

for different values of Δt in linear analysis  

 

As expected, it can be seen from Figure 10 that by 

decreasing the size of the time interval with the upward 

movement of the curves, the negative values of the Delta 

parameter are vanishing. As for Δt = 0.01s, it can be 

almost ensured that the delta values are positive during the 

analysis; therefore, this value can be considered as the 

optimal time interval, Δtopt.  

     Now, by performing the nonlinear analysis for this 

problem, the proper value for r for the case of elasto-

plastic behavior can be obtained by testing three values 

for r respectively corresponding to FE, TR, and BE 

integrating schemes. In the nonlinear case, it is interesting 

to note that, the FE technique again is most consistent 

with the reference solution (which is obtained with a very 

small time-step (Δt = 10-4s) by RK4 and Newmark 

methods). In this regard, the process of convergence of the 

numerical solution is shown in Figure 11 by decreasing 

the time-step interval for this model. 

 
Fig. 11: The convergence process of the nonlinear 

time-history responses in Example 4.1 for r = 0. 
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In the following, in a similar way to the linear analysis, 

the optimum size of the time-step is selected as Δt = 

0.005s for nonlinear analysis, and according to Figure 12.  

 

 
Fig. 12: The time-history of Delta in the case of r = 0  

for different values of Δt in nonlinear analysis  

 

After choosing the appropriate value of time-step for the 

analysis, the different results consist of the history of the 

displacement response, the force-deformation 

relationship, the phase-plane, and the energy history of the 

system can be depicted in Figure 13. The validation of 

these responses might be verified by RK4, Newmark, as 

well as (Clough & Penzien 2013[10]).  

 

 
(a) 

 

 
(b) 

 

 
(c) 

 
(d) 

Fig. 13: The nonlinear response of elasto-plastics system: (a) 

time-history of displacement; (b) force-deformation diagram; 

(c) phase-plane; (d) time-history of energies 

 

4.2. The vibration of a shape-memory alloy (SMA) 

subjected to harmonic loading  

Recently, the SMA materials due to their super-elastic 

behavior are highly regarded for improving the seismic 

performance of structures in earthquake engineering 

(Mahmoudi et al. 2018[24]). Although, in practice, few 

software can analyze the hysteretic behavior of this type 

of material directly. In this way, the combination of two 

elastic and plastic systems or modification of some 

models such as MPF (Mazzoni et al. 2007[25]) in 

Openness software is often used for practical applications. 

Here, an SMA oscillator with zero initial conditions is 

considered by Table 5, for analyzing by MEM. To better 

illustrate the material nonlinearity for the problem at 

hand, the skeleton curve of hysteretic behavior is 

illustrated in Figure 14.  

 

Table 5. The properties for analyzing Example 4.2 

Type of parameters Quantity symbol Value 

System’s 

characteristics 

Mass m 1 N.mm-1.s2 

Damping ratio ζ 10 % 

Initial stiffness k1 1 N.mm-1 

Loading (Cosine) 

Excitation 

frequency 
Ω 4 Rad.s-1 

Amplitude of load P0 200 N 

Nonlinear behavior 

Plastic/Elastic 

stiffness 
α 0.1 

Yield force FA 4 N 

The force in 

unloading at 

k1→k2 

FC 4 N 

Analysis Duration td 3.5 s 
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Fig. 14: The nonlinear Force-Disp. behavior 

 

In this problem, the instantaneous stiffness, kj (at time tj) 

can be defined as 
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 (33) 

 In this case, for the verification of the numerical solutions 

obtained by the energy method, the RK4 and Newmark 

are employed as the reference solution with a tiny time 

step (Δt=0.0001s) to ensure that the numerical solution 

approaches the exact solution of the problem. Herein, to 

select the appropriate value for the parameter r, using 

three values of Δt = 0.1s, 0.05s and 0.01s, the time-history 

of displacement is plotted for three different values of r = 

0, 0.5, 1 according to Figure 15. 

 

 

 

 
Fig. 15: The displacement response of the system  

for various values of parameters r and Δt 

 

According to the above diagrams, it can be seen that the 

case of r = 0, among the three values chosen for r, has 

better results when the results are compared with the 

reference solution. Hence, by fixing this value for the 

analysis, the optimum value of the time interval (Δtopt), 

can be determined by utilizing the time-history of the 

Delta, as shown in Figure 16. 

 

 

Fig. 16: The time-history of Delta in the case of r = 0  

for different values of Δt 

 

Based on the results observed from Figure 16, as 

expected, by decreasing the size of time-steps, the graphs 

move upward, and the negative values are reduced. 

Therefore, in order to avoid creating imaginary velocities 

in the analysis of this problem, the value of Δt = 0.01s 

seems to be appropriate. So, the numerical solutions 

correspond to this value, including the displacement 

history and phase-plane, along with the history of 

mechanical energies are plotted in Figure 17. 

 

 
(a) 

 

 
(b) 

 

 
(c) 
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(d) 

Fig. 17: The nonlinear response of elasto-plastics system: (a) 

time-history of displacement; (b) force-deformation diagram; 

(c) phase-plane; (d) time-history of energies  

 

4.3. A beam with compatible mass and non-classical 

damping matrices vibrating under a unit step load 

A beam element with two DOF including the translation, 

u1, and rotation, u2, is considered as shown in Figure 18.  

 

 
(a) 

 

 
(b) 

Fig. 18: Vibrating beam structure:  

(a) beam element characteristics; (b) applied step load 

 

According to (Weaver & Johnston 1987[34]) and using 

the concept of shape-functions in the finite element 

method, the mass (m) and stiffness (k) matrices for this 

structure can be expressed by 

2 23

156 13 6 32
,

13 4 3 2420
m k 





   
      

A EI
 (34) 

For simplifying the calculation of the analytical solution 

of this problem, by assuming the numeric parameters as 

beam’s length (ℓ=1m), mass per unit length 

(ρA=420kg/m), and flexural rigidity (EI=21.87N.m2). The 

first and second undamped natural frequencies of this 

vibrating system would be equal to T1=11.11sec and 

T2=1sec. If we want to construct a proportional damping 

matrix (based on the Rayleigh damping), by assuming a 

damping ratio of 5% for both of the first and second 

modes, the damping matric would be written as c=[11.91 

, 1.24; 1.24 , 1.48]; but, in order to have a general damping 

matrix, a non-classical/non-proportional damping matrix 

are used for the analysis. Overall, in this case, the 

governing equation of motion can be expressed in the 

following matrix form. 
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(35) 

As we know, in this case, the conventional modal analysis 

cannot be used directly since the damping matrix is not 

proportional, and complex normal modes must be used to 

obtain the exact solution of the system. Moreover, due to 

the existence of non-diagonal terms in the mass matrix, 

these second-order differential equations cannot be 

expressed in the state-space form; so, the Runge-Kutta 

techniques are also not applicable to this problem. Here, 

the Laplace transform is employed to obtain the exact 

response of the system as below (for interested readers a 

detailed mathematical proof is provided in Appendix 2). 

1

2

0.0152 0.000091exp( 0.7539 ) cos(6.2362 3.3387)

0.01516 exp( 0.0328 ) cos(0.5644 3.0874)

0.0228 0.00092 exp( 0.7539 ) cos(6.2362 3.2823)

0.02382 exp( 0.0328 ) cos(0.5644 0.0670)

t t

t t

t t

t t

u

u

   

  

    

  








 (36) 

To solve this 2-DOF system using the MEM, as described 

in Section 3.3, by decomposing the mass, damping, and 

stiffness matrices into two diagonal and non-diagonal 

matrices, the displacement history and the rotation of the 

beam can be computed by a computer program by means 

of Table 3. Once again, among three values of r=0, 0.5, 1, 

the first one, which has a better agreement with the 

exact/reference solution is shown in Figure 19. 

 

 

 
Fig. 19: The convergence process of the nonlinear 

time-history responses in Example 4.3 for r = 0:  

(a) translation DOF, u1; (b) rotational DOF, u2 

   

 In order to choose the optimum value of Δt, once again, 

we can monitor the time-history of Delta for the various 

value of time intervals. Obviously, there is more than one 
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Delta for these MDOF systems. For example, in the 

example above, we can draw two histories of the Delta 

parameter for the first and second DOFs, as shown in 

Figure 20. In these conditions, to choose the optimal size 

of the time interval, the most critical (negative) amount is 

used among all the cases. 

 

 
(a) 

 
(b) 

Fig. 20: Time-history of Delta: 

 (a) translation DOF, u1; (b) rotational DOF, u2 

 

With respect to both graphs from Figure 20, it is observed 

that the value of Δt = 0.02s can be almost a proper choice 

to take for the optimum time-step. Nevertheless, from a 

more conservative point of view, the value of Δt = 0.005s 

that leads to a more positive value for both translation and 

rotational DOFs for Delta in the whole time of analysis is 

utilized as an optimal size for time-step for this problem.  

     In the following, the numerical results correspond to       

Δt = 0.005s, including the displacement history and 

phase-plane along with the history of mechanical energies 

are plotted in Figure 21. It is to be noted that the validity 

of these results is verified with the closed-form solution 

by Eq.(36). 

 

 
(a) 

 

 
(b) 

 

 
(c) 

 

 
(d) 

Fig. 21: Time-history of different responses: 

(a) DOF#1,u1; (b) DOF#2, u2; (c) energy of the first DOF, E1; 

(d) energy of the second DOF, E2 

 

By observing Figures 21(a) and (b), it can be seen that the 

dynamic responses (u1(t) , u2(t)) after time-lapse (reaching 

the steady-state condition) will approaches to their 

corresponding static values; i.e., u1st = ℓ3/3EI = 0.0152 m 

and u2st = ℓ2/2EI = – 0.0228 Rad). These values can further 

be applicable in verifying the Eq.(36) as the time 

approaches the infinity and the vanishing of the 

exponential terms when t→∞. Furthermore, Figures 21(c) 

and (d) are also demonstrate the energy equilibrium of the 

system during the analysis; that is, the summation of 

kinetic, dissipated, and potential energies at any instant 

are equal to the external energy applied by the loading on 

the system.  

 

4.4. Seismic analysis of a multi-story building 

frame with nonlinear behavior 

A 3-story building frame as shown in Figure 22(a) with 

dynamic characteristics, according to Table 6, will be 

analyzed in this example.  

 
          (a) 
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         (b) 

 

 
        (c) 

Fig. 22: (a) 3-story building under seismic load; 

(b) tangential inter-story stiffness (c) nonlinear column forces. 

 

Table 6. The assumed properties for analyzing Example 4.4. 

parameters Quantity symbol Value 

System’s 

characteristics 

Roof’s masses m1=m2=m3 1 Ton.m-1.s2 

Damping coefficients c1=c2=c3 0.628 Ton.m-1.s 

Initial inter-story 

stiffness 
k1(0)= k2(0)=k3(0) 10 Ton.m-1 

Loading Earthquake ag Loma 

Analysis Duration td 2 s 

For the current problem, the horizontal ground motion of 

the Loma earthquake (scaled to 0.35g) is considered as the 

external excitation. Also, herein it is assumed the resisting 

force of columns is a nonlinear function of the inter-story 

displacement, as depicted in Figure 22(b). In this case, the 

instantaneous inter-story stiffness, k(t), from Figure 22(c) 

can be expressed regarding the initial stiffness, k0, and the 

inter-story drift ratio (IDR) as follows. 

0
( ) (1 ) 

n

i i i i
k t k q IDR  (37) 

In the above equation, the subscript i specifies the story 

number; the coefficient q also corresponds to linear 

behavior for a value of zero, and its positive and negative 

values represent the hardening and softening behavior in 

the system, respectively. In this research, the value of 0.2 

is selected for the power of n, according to (Chang et al. 

2017[7]). In addition, the coefficient q is assumed to be 

the same for all three resisting force of columns; so, by 

assuming a softening behavior, the value of q=-2.65 is 

used by performing a trial and error process based on the 

absence of negative stiffness in any of the stories (in this 

regard, see Figure 23). 

 

 

Fig. 23: The variation of the stiffness of stories vs. time  

 

In the following, as an instance, the bottom floor 

displacement response of the system is obtained by MEM. 

The results are compared with those of Newmark and 

RK2 in Figure 24(a). Overall, from this graph, it can be 

seen that the result in the case of r=0 has good agreement 

these two well-known numerical techniques; while, in the 

case of r=0.5 and r=1 have not been able to produce 

accurate results, and they are very different from the 

response given by the Newmark and RK2. The restoring 

force against the displacement of the 1st floor is also 

plotted in Figure 24(b).  

 

 
(a) 

 
(b) 

Fig. 24: The nonlinear response of the first floor:  

(a) time-history of displacement; (b) restoring force 

Similar to the former example, we can plot the time-

history of Delta in order to find the information about the 

precision of the obtained solution, as displayed in      

Figure 25. In this case, the size of time steps is fixed 

(Δt=0.005s), and we cannot decrease them to ensure the 

positive Delta parameters in each story. However, 

according to this diagram, it is observed that the values of 

Delta in all of the stories almost remain positive during 

the analysis, which is in line with the findings of        

Figure 24(a). 

 

Fig. 25: The variation of Delta for all of three stories 
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Finally, a question that may arise in the mind of the reader 

is whether the proposed method can be applied to the 

dynamic analysis of geometrically nonlinear frame-like 

structures? To this end, the following describes how to 

apply the proposed computational scheme to these 

problems, and then gives a numerical example in this 

regard. As we know in nonlinear geometric problems, the 

stiffness matrix is a function of the displacements of the 

system. For instance, the stiffness matrix for a six-DOF 

frame element with geometric nonlinearity is derived in 

Appendix 3. In these cases, after assembling the local 

stiffness matrices, the global stiffness matrix of the 

structure is obtained as K(u). For simplicity in numerical 

computations, this matrix is usually expressed as the sum 

of two separate matrices K(u)=Ke + Kg(u); one elastic 

matrices, Ke, plus a geometric stiffness matrix, Kg(u), 

(where arrays are a function of the current geometry of the 

system). To implement the presented approach in these 

cases, it will suffice to update the Kg(u) matrix (after 

calculating structural displacements) during each time 

step. 

 

4.5. Dynamic response of an arch with large 

deflection under time-varying pressure 

A circular shallow arc with the geometry shown in    

Figure 26 subjected to a dynamic pressure loading, 

depicted in Figure 27, will be analyzed here. This is an 

example of geometrically nonlinear problems in which 

mater ial  behavior  is  considered t o  be elas t ic .  

 

 
Fig. 26: A view of the arch structure  

 

 
Fig. 27: Time variation of the uniform pressure loading. 

 

The dynamical response of this system was first studied 

by Humphreys (1966[15]) using the Galerkin 

approximation, and then other researchers such as 

(Wilson et al. 1972[36]) implemented their proposed time 

integration method on it. The parameters related to this 

problem are listed in Table 7 in accordance with the above 

references. 

 

Table 7. Dynamic data used for analyzing Example 4.5  

Type of 

parameters 
Quantity symbol Value 

Arch 

 geometry 

Half of the subtended angle β 30 Degree 

Thickness h 2 in 

Arch radius R 73 in 

Material  

Properties 

Mass density ρ 
6.25×10-3 

lbm/in3 

Elastic modulus E 3326 Psi 

Analysis Duration td 1.5 s 

 

To implement the proposed method to the problem at 

hand, first, the arc shape of the structural geometry is 

approximated with straight segments. In this regard, ten 

frame elements have been selected by performing the 

sensitivity analysis and also the trial and error process on 

the number of these components. Accordingly, by 

ignoring the damping effects, and by forming the mass 

and stiffness matrix of these elements (see Appendix 3) 

and then the nodal load vectors, with assembling the local 

matrices in global coordinates of the structure, the 

equilibrium equations are solved by the MEM. It is 

noteworthy that, given the multiplicity of DOF in this 

structural system, parameter Δ ̅ is defined as the ratio of 

average transverse displacements to the mean arch rise as 

follows. 

L L

0 0

L

0

0

1
w(x, t) w(x, t)

L
(t)

H1
y (x)

2L

  

 



  (38) 

In Eq.(38), w(x,t) is the transverse deflection along the 

arch; y0(x) represents the initial quadratic shape of the 

structure; H and L also stand for arch rise and length, 

respectively.  

   To validate the numerical results obtained by the MEM, 

the time-history response presented by (Wilson et al. 

1972[36]) is selected as the reference solution. In this 

way, three time-steps Δt=0.02s, Δt=0.01s, and Δt=0.005s 

are used according to Figure 28. It can be seen from this 

graph that as time steps become smaller, the numerical 

results of the energy method converge well to the 

reference solution. 
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Fig. 28: Time-history responses of the energy method for three 

values of time intervals versus reference solution. 

 

5. Conclusion 

In the present research, a new form of the Modified 

Energy Methods (MEM) is introduced to numerically 

analyze the time-dependent response of general nonlinear 

structures. In this technique, the analyst rather than 

dealing with three unknowns (acceleration, velocity, and 

displacement) encounters only with velocity and 

displacement during a time-history analysis.  

     The stability analysis of the method showed that in a 

linear finite element system with the smallest period of Tn, 

in the case of r=0, the critical value of time-step is equal 

to Δtcr=0.509Tn; while, for other values of the parameter r 

(i.e., r = 0.5, 1), the stability condition cannot be 

guaranteed for a specific range of Δt. According to the 

previous result, by choosing the value of r = 0 (Euler's 

Forward integration method), the accuracy analysis also 

indicated that the RK2 technique possesses much larger 

amplitude and artificial damping errors compared to the 

MEM. Moreover, regarding the selection of additional 

parameters for the direct time integration methods, the 

presented form only requires to define a parameter r 

where the results of Section 4 overall showed that the 

value of r = 0 (or values close to zero) is appropriate to 

compute the dynamic response of structures, accurately. 

Besides, the quadratic form of the discrete equations in 

terms of system’s velocities creates a unique feature in the 

method, which is absent in any of the existing methods in 

the dynamic analysis of structures; that is, based on the 

assumption of avoiding the creation of imaginary 

velocities in the analysis process, an additional condition 

can provide useful information to the analyst in terms of 

controlling the selected size of time interval, especially in 

nonlinear analyzes. By the other words, in this technique, 

unlike conventional methods, the optimal size of the time-

steps interval in the analysis is a function of external 

loading and in particular the nonlinear properties of the 

model used in the analysis.  

     Performing a dynamic analysis with the variable time 

intervals using the modified energy method is a desirable 

subject for future work. Besides, more research is needed 

to apply and test the presented idea to the analysis of 

equations of the system of other complex systems in 

engineering, such as dam-reservoir equations. 
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Appendices 

 

Appendix 1. Mathematical Proof of the MEM for 

General Nonlinear MDOF Systems 

 

By focusing on the ith row in Eq.(24), one can write 
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Multiplying by dui and integrating from tj to tj+1, gives 
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According to the presented context in Section 3.1, each 

part of this expression can be expressed as the change of 

one type of mechanical energy. For example, the variation 

of the kinetic energy  
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dissipated energy,  
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potential energy, 
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as well as, external excitation energy 
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(A.6) 

Similarly to the case of single-degree free systems, by 

inserting equations (A.3) to (A.6) within the incremental 

form of energy balance relation (A.2) and then using 

Euler's formula, n-quadratic equations regarding velocity 

can be obtained as follows. 
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(A.7) 

 

Expressing previous relationships in large-scale structures 

in a matrix form will be suitable both in displaying 

equations and in computer programming. Hence, the 

decomposition of mass, damping, and stiffness matrices 

to two diagonal (D) and non-diagonal (ND) matrices is 

desirable as follows. 

D ND

D ND

D ND

M M M

C C C

K K K

 

 

 

 (A.8) 

Eventually, the vectors consist of coefficients in quadratic 

Eq.(25) would be simplified as 
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In these relationships, a1=rΔt and a2=(1- r)Δt are two 

parameters affected by the size of the time-step and 

integration scheme. 

 

 

Appendix 2. Derivation of Exact Solution in Example 4.3 

By Laplace Transform 

 

The set of governing equations with zero initial 

conditions to be solved is 

 1 2 1 2 1 2

1 2 1 2 1 2

156 13 10 2 262.44 131.22 ( )

13 4 2 4 131.22 87.48 0

     

      

u u u u u u H t

u u u u u u
 (A.10) 

where the H(t) denotes the Heaviside step function. 

By taking Laplace Transform with defining F=L(u1) and 

G=L(u2) and imposing zero initial conditions, we have 
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(A.11) 

Where s is the transformation variable. 

To obtain F and G functions, by solving Eq.(A.11)  
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As we know from mathematics, in order to take the 

inverse Laplace transform, it would be appropriate to 

write these expressions in the form of partial fractions. 
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Eventually, by taking the inverse transform, L-1, and 

simplifying, the response of the system (u1,u2) can be 

computed 

1

2
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Appendix 3. Finite Element Formulation of a Frame 

Element with Geometric Nonlinearity 

 

With regard to (Reddy 2014[30]), a planar beam-column 

element is considered as shown in Figure 29(a). 

Generally, three DOFs (two transitions in the x-dir. and y-

dir. along with one rotation about the z-axis) may be 

defined at two end nodes. This structural component is 

subjected to external loading, q(x) and f(x) respectively 

stand for transverse and longitudinal loads according to 

Figure 29(b). 

 

 
(a) 

 

 
(b) 

Fig. 29: A view of the frame element:  

(a) Six DOFs defined for the element; (b) Applied loading. 

 

So the whole degrees of freedom of this element can be 

expressed by {de}={u1, Δ1, Δ2,u2, Δ3, Δ4}. Now, if we 

approximate the displacement field within the element, 

including axial displacement, u(x), and transverse 

deformation, u(x), by the interpolation functions (a.k.a 

shape functions) with Eq.(A.15). 

(A.15) 
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In which ψ(x) and ϕ(x) functions can be obtained in 

terms of a dimensionless coordinate variable, ξ=x/L. 

(A.16) 
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The nonlinear strain-displacement relationship by taking 

into account the large deformations under the Bernoulli's 

hypothesis (i.e., ignoring the distortional deformations) is 

expressed as follows. 

(A.17) 
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Where the existence of (∂w/∂x)2 denotes the nonlinear 

geometric effect (large deformation) in the present 

problem. Assuming linear behavior of the materials 

(σx=E.εx) one can express the strain energy stored in the 

element, Ue, as below. 

(A.18) 
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Besides, the potential energy, Ve, associated with the 

applied loads is also given by 

(A.19) 
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V
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Subsequently, the potential function (Пe=Ue-Ve) and 

applying the minimum total potential energy principle 

(δПe=0) along with some mathematical simplification, the 

equilibrium equations of the system may be written in 

matrix form. 

(A.20) 
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By definition: 

1
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u for i and 

2
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I I
for I  

these matrix and vectors are defined as follows. 
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Note that the elements of the matrices K12, K21, and K22 

are functions of the unknown variable, w(x); therefore, it 

is necessary to update the stiffness matrix of the elements 

at any time in terms of the current geometry of the system 

by employing a trial and error process. 


