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Abstract: 
The lateral-torsional buckling of tapered thin-walled beams with singly-symmetric cross-

section has been investigated before. For instance, the power series method has been previously 

utilized to simulate the problem, as well as the finite element method. Although such methods 

are capable of predicting the critical buckling loads with the desired precision, they need a 

considerable amount of time to be accomplished. In this paper, the finite difference method is 

applied to investigate the lateral buckling stability of tapered thin-walled beams with arbitrary 

boundary conditions. Finite difference method, especially in its explicit formulation, is an 

extremely fast numerical method. Besides, it could be effectively tuned to achieve a desirable 

amount of accuracy. In the present study, all the derivatives of the dependent variables in the 

governing equilibrium equation are replaced with the corresponding forward, central and 

backward second order finite differences. Next, the discreet form of the governing equation is 

derived in a matrix formulation. The critical lateral-torsional buckling loads are then 

determined by solving the eigenvalue problem of the obtained matrix. In order to verify the 

accuracy of the method, several examples of tapered thin-walled beams are presented. The 

results are compared with their counterparts of finite element simulations using shell element 

of known commercial software. Additionally, the result of the power series method, which has 

been previously implemented by the authors, are considered to provide a comparison of both 

power series and finite element methods. The outcomes show that in some cases, the finite 

difference method not only finds the lateral buckling load more accurately, but outperforms the 

power series expansions and requires far less central processing unit time. Nevertheless, in 

some other cases, the power series approximation has less relative error. As a result, it is 

recommended that a hybrid method, based on a combination of the finite difference technique 

and the power series method, be employed for lateral buckling analysis. This hybrid method 

simultaneously inherits its performance and accuracy from both mentioned numerical methods. 

 

1. Introduction 

Due to efficiency in the increasing stability of structures, 

reduction in structural weight and cost and the 

improvements in fabrication process, thin-walled beams 

with open and variable cross-section are extensively 

spread in steel structures as beams and columns. Regarding 

the presence of bending-torsion coupling effect and 

variable cross-section properties, accurate estimation of 

lateral buckling loads is complicated.  
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Therefore, there are a large number of researches devoted 

to lateral-torsional stability analysis of thin-walled beams. 

Many numerical techniques such as finite element method 

or the power series method have been utilized to solve the 

stability of the thin-walled structures. Consequently, some 

improvements have been obtained by several authors in the 

case of non-uniform thin-walled beams with arbitrary 

cross-section shapes. Closed-form solutions for the 

flexural and lateral-torsional stability of thin-walled beams 

have been carried out since the early works of Timoshenko 

and Gere, 1961 [34], Vlasov, 1962 [35], Chen and Lui, 

1987 [11] and Bazant and Cedolin, 1991 [7] for I-beams 

under some representative load cases. For tapered beams, 

Brown, 1981 [9] adopted a shell element method to obtain 

the numerical buckling load of tapered beams. Yang and 

Yau, 1987 [36] formulated a general finite element model 

to investigate the instability of a doubly symmetric tapered 
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I-beam by considering the effect of geometric non-

linearity. In the case of stability analysis of thin-walled 

beam with variable cross-section based on a variational 

approach, Pasquino and Sciarra, 1992 [27] derived the 

governing equilibrium equations. Kim and Kim, 2000 [17] 

proposed a finite element approach for the lateral–torsional 

buckling and vibration analyses of doubly symmetric I 

tapered thin-walled beams. Yau, 2006 [37] adopted a finite 

element procedure to analyze lateral stability behavior of 

tapered I-beams under torsion moment. In this study, the 

total potential energy was obtained by discretizing one 

single beam into three narrow tapered elements. In other 

words, two flanges and web of each cross-section were 

considered as a tapered thin-walled beam. Based on the 

Rayleigh-Ritz method, combined with shell element, a 

general variational formulation to analyze the lateral-

torsional buckling behavior of tapered thin-walled beams 

with singly symmetric I-section was presented by Andrade 

and Camotim, 2005 [2] and Andrade et al., 2007 [3]. 

Erkmen and Mohareb, 2008 [14, 15] adopted the 

combinations of stationary complementary energy and 

Koiter’s polar decomposition theory to determine a new 

finite Element model of thin-walled members with open 

sections for linear buckling analysis. Regarding 

deformation compatibilities of web and flanges, the total 

potential energy was obtained by Lei and Shu, 2008 [20] 

to present a finite Element model for linear lateral stability 

analysis of web-tapered beams with doubly symmetric I-

section. Kurniawan and Mahendran, 2009 [18] presented a 

finite element technique to study the lateral-torsional and 

distortional behaviors of simply supported Light Steel 

Beams (LSBs) under bending loading in which the effect 

of additional twisting caused by load eccentricity is taken 

into account. Attard and Kim, 2010 [6] adopted 

hyperelastic constitutive model to obtain the equilibrium 

equations and lateral buckling of prismatic beam due to the 

presence of shear deformation. The exact lateral–torsional 

stability criterion of cantilever strip beam subjected to 

combined effects of intermediate and end transverse point 

loads by means of Bessel functions was proposed by 

Challamel and Wang, 2010 [10]. Based on determining the 

total potential energy and employing the Rayleigh-Ritz 

method, Kabir and Seif, 2010 [16] proposed an analytical 

method to obtain lateral-torsional buckling load of a beam 

with I-section and retrofitted using FRP sheets. Asgarian 

et al., 2013 [5] studied the lateral-torsional behavior of 

tapered beams with singly-symmetric cross-sections. The 

equilibrium equation was solved by the power series 

expansions. This method has been applied to beams where 

boundary conditions and loads could be arbitrary. Web and 

flange tapering have also been considered. An analytical 

technique was proposed by Yuan et al., 2013 [38] to obtain 

the lateral– torsional buckling load of steel web tapered 

tee-section cantilevers subjected to a uniformly distributed 

load and/or a concentrated load at the free end. A non-

linear formula based on 1D model for lateral buckling 

analysis of simply supported tapered beams with doubly 

symmetric cross-sections was proposed by Benyamina et 

al., 2013 [8]. Kuś, 2015 [19] investigated a numerical 

procedure for the lateral buckling stability analysis of 

beams with doubly-symmetric cross-section. In his work, 

the Ritz method has been adopted and the effects of 

simultaneous changes of the web height and flange width 

are taken into consideration. Recently, Ruta and Szybinski, 

2015 [29] applied Chebyshev series to solve the torsion 

fourth order differential equation obtained by Asgarian et 

al., 2013 [5] and also to determine the critical lateral-

torsional buckling of simply supported and cantilever 

beams with arbitrary open cross-sections. Based on non-

linear model, Mohri et al., 2015 [24] extended the tangent 

stiffness matrix and 3D beam element with seven degrees 

of freedom to the lateral buckling stability of thin-walled 

beams with consideration of large displacements and 

initial stresses. The post buckling behavior was measured 

in the first time and compared to shell elements. Based on 

Vlasov’s assumption, Chen et al., 2016 [12] derived the 

element stiffness matrix of the pre-twisted thin-walled 

straight beam with elliptical section and I-cross-section. 

Effect of uniform Winkler-Pasternak elastic foundation on 

torsional post-buckling behavior of clamped beam with 

doubly-symmetric I-section was assessed by Rao and Rao, 

2017 [28]. Based on a generalized layered global-local 

beam (GLGB) theory, Lezgy-Nazargah, 2017 [21] 

proposed an efficient finite element model for the elasto-

plastic analysis of beams with thin-walled cross-section. 

Moreover, a new finite element solution was proposed by 

Nguyen et al., 2017 [25, 26] for computing lateral-

torsional critical loads of FGM thin-walled beams with 

singly symmetric open-section. Based on the classical 

energy approach, Chen et al., 2019 [13] suggested a novel 

technique for estimating the lateral-torsional buckling load 

of simply supported beam with I-section. In order to 

investigate the buckling capacity of straight thin-walled 

box beam (STBB) subjected to an eccentric force, a non-

linear theory was developed by Tan and cheng, 2019 [33]. 

More recently, Achref et al., 2019 [1] assessed higher 

buckling and lateral buckling of beams with open cross 

sections through an analytical technique and finite element 

solution. 
In previous authors’ works (Asgarian et al., 2013 [5], 

Soltani et al., 2014 [30, 31]; Soltani et al., 2019 [32]), the 

stability and vibration behavior of tapered beams with thin-

walled cross-section was comprehensively assessed. For 

instance, a numerical technique based on the power series 

expansions of displacement components was employed to 

simulate the problem (Asgarian et al., 2013 [5], Soltani et 

al., 2014 [30]), as well as finite element method (Soltani et 

al., 2014 [31]; Soltani et al., 2019 [32]). Since, the linear 

stability behavior of beam with thin-walled open cross-

section is governed by three fourth-order differential 

equations coupled in terms of the transverse deflection, the 

lateral displacement, and the torsion angle, the power 

series method requires a considerable amount of time to 

determine explicit expressions of displacement functions. 

Another numerical method based on the power series 

expansions to acquire structural stiffness matrices was also 

proposed by authors to perform lateral stability analysis of 

non-prismatic members with non-symmetric thin-walled 

cross-section (Soltani et al., 2014 [31]; Soltani et al., 2019 

[32]). It is believed that this finite element solution is a bit 

faster than PSM. Please refer to Soltani et al., 2019 [32] 

for more details. 
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 The main purpose of the current paper is to investigate 

the lateral-torsional buckling behavior of tapered beams 

with singly-symmetric cross-section under arbitrary loads 

by an alternative more efficient numerical technique: the 

finite difference method. In the first stage, the equilibrium 

differential equation of the non-prismatic beam in terms of 

twist angle and the related boundary conditions are 

expressed. In the second stage, the fourth order differential 

equation and boundary conditions are discretized by FDM. 

In this regard, the expressions of derivatives of 

displacement represented in the stability equation are 

presented based on aforementioned numerical method. 

Finally, the system of finite difference equations 

culminates in a set of simultaneous linear equations and the 

elastic critical lateral buckling loads are calculated by 

solving an eigenvalue problem of the obtained algebraic 

system. 

In order to demonstrate the accuracy and efficiency of 

this method, two numerical examples are studied. 

Different representative load cases and various boundary 

conditions are considered. The obtained results are 

compared to finite element simulations using ANSYS 

software and to other available numerical and analytical 

benchmark solutions. The stability analysis of uniform 

members as well as non-uniform ones can be performed 

through the proposed method. Comments and conclusions 

are presented towards the end of the manuscript. 

 

2. Lateral Stability Equilibrium Equation for 

Tapered Beams with Singly-Symmetric Cross-

Section 

A non-prismatic thin-walled beam with singly-symmetric 

I section as depicted in Fig.1a is taken into account. It is 

contemplated that the beam is made from homogenous and 

isotropic material with E and G the Young's modulus and 

shear constant. In the current research, the beam is initially 

subjected to arbitrary distributed force qz in z direction 

along with a line (PP’) on the section contour (Fig.1a). The 

displacement parameters of thin-walled beams with singly-

symmetric cross-section are depicted in Fig. 1b. The shear 

center C is known by its coordinates (0, zc) in the reference 

coordinate system, which is fixed in centroid O. On the 

section contour, there are 3D displacement components 

called U, V and W. is the twist angle.  

Based on the assumption of small displacements and 

Vlasov’s thin-walled beam theory for non-uniform torsion, 

Asgarian et al., 2013 [5] derived a homogeneous fourth 

order differential equation with variable coefficients in 

terms of twist angle (), the bending moment (My) and 

section properties by uncoupling the system of differential 

equations governing the lateral-torsional stability behavior 

of tapered beams with thin-walled cross-sections. The 

resulting governing equilibrium equation in the case of 

singly symmetric compact cross-section is reduced to the 

following ones:  
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In the above-mentioned expression, the successive x-

derivatives are denoted by ( )’, ( )”. In this equation, J and 

Iz signify the Saint-Venant torsion constant and the second 

moment of inertia, respectively. 


I  is the modified 

warping constant. Numerical formulations for computing 

these parameters relating to considered open section 

shapes in this study viz: doubly symmetric I section, singly 

symmetric I section and Tee section are presented in 

Appendix A. In the differential equation, Mt expresses the 

second order torsion moment due to load eccentricity (Mt 

= qz (zp-zc)). z also illustrates Wagner’s coefficient in 

which the exact formulation of this parameter is presented 

in [5]. 

 
Fig. 1: (a) A tapered thin-walled beam with a singly symmetric 

I-section, (b) Coordinate system and notation of displacement 

parameters. 

 

Extending the first equation results in: 
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For tapered thin-walled beams with singly-symmetric 

cross-section, the lateral-torsional stability analysis 

becomes more complex due to the presence of variable 

coefficients in the governing fourth order differential 

equation. Regarding this, the solution of the differential 

equation (2) is not straightforward and only numerical 

procedures such as Galekin and Rayleigh-Ritz methods, 

differential transformation method, the power series 

expansions, finite difference method (FDM) and 

differential quadrature method (DQM) are possible. In the 

following, in order to solve the equilibrium equation (2) of 

non-prismatic thin-walled beams with singly-symmetric 

cross-section, the finite difference method is adopted. In 

order to solve the governing differential equation (Eq. (1)) 

based on this mathematical procedure, prescribed 
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boundary conditions including natural or geometrical ones 

at the two ends of the problem domain are required. It is 

noteworthy that the governing differential equation (Eq. 

(1)) is known as the strong form of the problem. Besides, 

to acquire the corresponding boundary conditions, the 

homogeneous differential equation should be transformed 

to a weighted-integral expression called the weak form 

which is equivalent to equilibrium equation and its relating 

boundary conditions. In order to construct the weak form 

for the governing differential equation, we should multiply 

Eq. (1) by an arbitrary function ( ) and integrate the 

result over the problem domain. The weak form of the 

equilibrium equation in terms of the twist angle (Eq. (1)) 

is thus obtained by: 
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in which   is a test function which is continuous and 

satisfies the essential end conditions. Thus, the weak form 

for the equilibrium equation becomes: 
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In the current study, simply supported beams and 

cantilevers are surveyed. Their corresponding boundary 

conditions are thus defined as follows: 

Pinned support: 0      and    

2

2
0

d

dx


                     (5) 

Clamped support: 0     and   0
d

dx


                        (6) 

Free end:  
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3. FDM formulation of the problem  

For solving differential equations with generalized end 

conditions, finite difference method is supposed to be a 

dominant numerical technique. Finite difference approach 

is a numerical iterative procedure that involves the use of 

successive approximations to obtain solutions of 

differential equations especially with variable coefficients. 

This numerical method is based on replacing each 

derivative in the differential equation (2), as well as its 

related boundary conditions (5-7) with finite difference 

formulations.  

In order to apply the finite difference method to the 

equilibrium equation (2), the beam member with length of 

L is assumed to be sub-divided into n parts, with length 

h=L/n, as shown in Fig. 2. Therefore, there are (n+1) nodes 

along the beam’s length with number i=0, 1…, n, with 0 

and n denoting beam ends. From numerical point of view, 

the second order forward difference formulation is used for 

the first node (i= 0) whereas for the last (i= n), the second 

order backward formulation is applied to the governing 

equation. For all the other nodes (0 <i < n), the second 

order central difference formulation is implemented.    

 

 
 Fig. 2: Finite Difference Method: Definition spaced grid 

points. 

 

The finite difference form of the governing differential 

equation at node i, can be expressed as follow:  
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Or 

2

2 2

1
3 3 2

2 2 4

2

4 4 4

2

( )

2 4

0.5 0.5 ( ) ( )

6 2 2 2

2 ( )

i i i

ii i i

i

i zi yi zi yi

i yi cii i

yi

i yi ci yi ci
zi

zi yi ti

i

EI EhI

EhI Eh I EI Gh J

h GJ h M h M

EI Eh I Gh J h M z

M
h M z h M z h

EI

h M M

 

  

 




 











 

    
 
    

     
 
 
     
 
 
  
 



2 2

1
3 3 2

2

2 4

0.5 0.5 ( ) ( )

( ) 0

ii i i

i zi yi zi yi

i i i

Eh I EhI EI Gh J

h GJ h M h M

EhI EI

  

 

 







    
 
    

  

           (9) 

in which,

 
2 1 1, , ,i i i i     

 and i 2   are the angle of twist 

of the considered member in five points, located at equal 

distances of h.  

In the following, Eq. (9) should be written for n-1 grid 

points of a divided element. (n-1) equations are thus 

derived including n+3 unknown parameters (

1 0 1 1, , ,...., ,n n     
). In order to solve the system of 

obtained equations by the finite difference method, four 

equations eventuated from boundary conditions of the 

beam are required as follows: 



17 

 

 Simply supported beams: 
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 Cantilever beams:                                              (11) 
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It is worth mentioning that forward and backward finite 

difference formulations are respectively implemented for 

the first (i=0) and last (i=n) nodes. In this manner, no 

virtual nodes are required and the overall error is thus 

reduced. Therefore, finite difference approach in the 

presence of n equal segments constitutes a system of 

simultaneous equations with (n+3) linear equations. In the 

following, the simplified equilibrium equation through FD 

formulation is written in a matrix notation as follows: 

     *
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                (12) 

R and R* are 3 3n n    matrices. As previously 

mentioned, n denotes the number of segments along the 

computation domain ( 0 x L  ). Regarding Eq. (9), the 

terms of R and R* for 1 1i n    are determined in the 

following forms: 
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In Eq. (12), {θ} is the displacement vector:
         

 

   1 0 1 2 1 1. . .
T

n n n              (14) 

The remaining constants in matrices [R] and [R*] are 

obtained from the boundary conditions: 

 Simply supported beams:                                          (15) 
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 Cantilever beams:                                                 (16) 
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System (12) is fulfilled with the condition that the 

determinant of the matrix ([R]+[R*]) be zero. The smallest 

positive real root of the equation is considered as critical 

buckling load. The critical buckling load will be close to 

the exact value by increasing the number of segments. In 

the following, the finite difference method is applied to 

study the stability analysis of thin-walled beams with 

different boundary conditions and arbitrary loadings, in the 

presence of variable cross-sections. The critical buckling 

load is calculated by using eigenvalue. The calculation 

procedure is done with the aid of MATLAB software [22].  

 

4. Numerical Examples 

By means of two selected numerical examples, the 

efficiency, accuracy and precision of the finite difference 

method in lateral-torsional buckling analysis of tapered 

thin-walled beams with singly-symmetric cross-section are 

studied below. The results are compared to other analytical 

and numerical solutions presented in literature, as well as 

finite element method by means of ANSYS [4]. 

 

4-1 Example 1- Simply supported web-tapered beam 

under gradient moment: 

This example investigates the lateral buckling stability of 

a simply supported tapered beam under gradient moments 

(M0, M0) applied at supports (Fig.3a). The gradient 

moment factor ( ) varies from +1 to -1. In this study, the 

beam length is L=9m. The beam has three different cross-

sections at the first support depicted in (Fig. 3 b, c, d). The 

first two sections are doubly and singly symmetric I 

section and the third one is a Tee section. The cross section 

height decreases from hmax at the left support to hmin =hmax 

at the right one.  

The elastic lateral-torsional buckling moments are 

evaluated for different values of gradient moment (

11   ) and tapering coefficient  (0.4, 1). The 

material data is depicted in Fig. 3. According to the loading 

condition and Fig. 3, the expression for the bending 

variation My is equal to: 
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Fig. 3 - Simply supported tapered beam under moment gradient: 

(a): geometry and material properties, (b) doubly symmetric 

section, (c) singly symmetric section and (d) Tee section. 

 

Taking into account the author’s knowledge on PSM 

[5], the results of this numerical approach are very 

sensitive to the number of terms considered in the power 

series approximations. Therefore, in each case of loading, 

it is important to estimate the needed number of terms of 

power series to evaluate an explicit expression for 

deformation shape of the member and then to calculate the 

lowest lateral-torsional buckling loads below an acceptable 

relative error. According to [5], for most of the external 

bending load cases, it is not indispensable to use more than 

20 terms in power series expansions, in order to obtain 

critical elastic buckling loads with exceptionally good 

accuracy. But in the case of negative gradient moment 

loading ( 1 0   ) and according to Eq. (17), the sign 

for bending moment changes from positive to negative. 

Therefore, predicting the exact deformation of the 

buckling mode of the beam under mentioned external 

loading condition is significantly complicated due to the 

concavity changes. One can check that the lateral buckling 

modes are highly dependent on the cross section shape and 

gradient moments. They are available in [23]. For this 

reason, the solution of fourth-order differential equation 

(1) becomes absolutely difficult when the gradient factor 

() is negative. It can be concluded that for equivalent 

accuracy of lateral-buckling loads of members under 

variable negative bending moment, and specifically for a 

non-uniform beam with non-symmetric cross-section 

under these circumstances, it is obviously required to 

consider more than 20 terms of power series to determine 

a more accurate deformation shape. In this regard, in the 

first stage of the current example, the lateral buckling 

moment of the prismatic and tapered beam with singly 

symmetric I section under a negative gradient moment 

(M0, -0.5M0) needs to be contemplated to estimate the 

required numbers of terms of power series and finite 

difference approach. Therefore, the first two buckling 

loads are researched according to the number of divisions 

in FDM and the number of terms of power series in PSM 

needed for convergence which are illustrated in Table 1. 

The results are compared to FEM simulations. In this 

example, the studied homogeneous thin-walled beam has 

been modeled using shell elements (SHELL63) of Ansys 

code. Shell63 has both bending and membrane 

capabilities. Both in-plane and normal loads are also 

permitted. The element has 6 degrees of freedom at each 

node, 3 translations in x, y and z directions and 3 rotations 

about the 3 axes. In this paper, for all developed models by 

Ansys, the adopted aspect ratio of the element (length-to-

maximum width) was close to unity at the largest cross-

section. The first two lateral-torsional buckling mode 

shapes of the prismatic and tapered beams with mono-

symmetric I-section under (M0, -0.5M0) are represented in 

Fig. 4.   

 

 

 

 
 

 
Fig. 4: The uniform shell mesh used for beam with singly 

symmetric I-section subjected to gradient moment (M0, -0.5M0). 

 

 

 

(a) 1st buckling mode shape 

of prismatic beam 

(b) 2nd buckling mode shape 

of prismatic beam 

(c) 1st buckling mode shape 

of web-tapered beam 

(d) 2nd buckling mode shape 

of web-tapered beam 
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Table 1: Effect of number of divisions (FDM) and power series terms (PSM) on linear critical moments (Mcr) of simply supported thin-

walled beam with mono-symmetric cross-section under (M0, -0.5M0). Buckling moments and CPU time comparisons. 

B
ea

m
 

T
y

p
e 

M
o

d
e 

The critical bending moments (kN.m) ), accompanied with the average CPU time (s) 

Proposed FDM PSM 

ANSYS Number of divisions Number of terms of power series 

10 15 20 30 40 50 30 40 50 60 

P
ri

sm
a

ti
c 

B
ea

m
 1 

89.765 

(5.30s) 

85.561 

(7.91s) 

84.103 

(10.83s) 

83.032 

(19.63s) 

82.665 

(25.67s) 

82.495 

(41.29s) 

70.35 

(12.21s) 

79.46 

(60.61s) 

80.74 

(1437.70s) 

80.75 

(3075.90s) 

82.19 

(22.5s) 

2 204.216 195.415 192.346 190.174 189.395 189.030 291.3 200.08 191.36 190.45 188.4 

T
a

p
er

ed
 B

ea
m

  

(
=

0
.4

) 

1 
88.248 

(5.68s) 

83.658 

(8.17) 

82.088 

(11.41s) 

80.984 

(20.05s) 

80.595 

(26.05s) 

80.411 

(40.36s) 

62.56 

(12.61s) 

69.87 

(131.50s) 

74.81 

(3989.02s) 

76.92 

(13244.5s) 

80.09 

(26.2s) 

2 198.020 190.997 188.650 186.915 186.287 186.005 303.05 221.73 195.42 192.63 185.51 

 

4.1.1. Comparison of FDM and PSM results    

As can be seen in Table 1, the satisfactory results for 

engineering requirements can be reached by discretizing 

the beam’s length into 30 segments according to the FDM 

formulation investigated in the current paper. With the 

help of PSM, one needs more than 50 terms to achieve the 

same accuracy. Moreover, the elapsed time to perform 

numerical computations is presented in Table 1. Table 1 

shows that Central Processing Unit (CPU) needs an 

average of 19.63 seconds to accomplish FDM simulation 

for a prismatic beam with 30 divisions. The buckling 

moment is 83.032 kN.m (error 1%). When the number 

of divisions is increased to 50, the buckling moment is 

close to shell results (Mcr=82.495 kN.m, error <0.5%). 

The needed CPU time is only 41.29s.  With the PSM, an 

accurate value of buckling moment equal to 79.46 kN.m 

(error =3%) is obtained with a number terms in the series 

equaling to 40. This method requires 60.61 s CPU time. In 

order to improve the results, more CPU times are needed. 

With 50 terms the buckling moment is 80.74 kN.m (error 

=2%) and the CPU time is impressive (1437 s). When the 

number terms is increased, the buckling moment becomes 

insensitive and the CPU time increases accordingly. 

Additionally, for this example the relative error of FDM is 

less than its counterpart in PSM. This proves that PSM 

could be effectively replaced by FDM in this example. The 

same statement is true for non-prismatic beam in Table 1. 

Note that according to the FDM, boundary conditions 

and arbitrary loads and cross section shapes have no 

special influences on the results and for most of the studied 

cases. For this reason, in the following examples, the beam 

is divided into 30 segments. 

The main gist of the load case depicted in Fig.3a relating 

to three different considered cross-sections, as shown in 

Fig. 3b-d, are commented below. Before expressing the 

conclusions of this example, it should be pointed out that 

the outcomes are valid only for the cross-sections studied. 

 

4.1.2. Lateral buckling strength of simply supported beam 

with doubly symmetric cross section 

The buckling moment variations in terms of the gradient 

moment are depicted in Fig. 5. The lateral buckling 

strengths of the prismatic beam with doubly symmetric I 

section are presented in Fig. 5a. It can be concluded that 

there is an excellent agreement between the buckling 

moments calculated by proposed numerical formulation 

and those estimated by finite element simulations, using 

shell element of ANSYS software [4]. The relative 

difference between the two abovementioned methods is 

about 1%.  

 

 
Fig. 5: Variation of lateral buckling moment of beam with 

doubly-symmetric I-section under gradient moment, versus the 

gradient factor : (a) prismatic beam, (b) tapered beam. 

The variation of lateral buckling moments of the simply 

supported web tapered beam with doubly symmetric I-

section subjected to gradient bending moment versus the 

gradient coefficient () is also represented in Fig. 5b. As 

can be seen, the results of the present method (FDM) and 

ANSYS code are very close especially for positive 
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gradient factor   ( 0 1  ). Under negative factor, 

critical moments computed from FDM underestimate 

tapered beam strength (3% error). According to Fig. 5a, b 

and for both uniform and non-uniform beams with doubly 

symmetric cross-section under bending moment, variation 

of the lateral buckling resistance is non-linear with .  

Besides, the maximum strength is reached when  

for the prismatic beam. These results are confirmed in [23]. 

In the case of the tapered beam the maximum strength is 

obtained for . This result is original.  

4.1.3. Lateral buckling strength of simply supported beam 

with singly symmetric cross section 

In the case of mono-symmetric I-section, the lowest two 

buckling moments variation versus the gradient moment 

factor for prismatic and non-prismatic beams are 

respectively presented in Figs. 6 and 7. In the case of the 

lowest critical buckling moment corresponding to the first 

mode, it is supposed that the bottom flange, precisely the 

shorter one is in compression and those related to the 

second mode are evaluated when gradient moment loading 

causes compressive stress on the top flange (the longer 

one) of mono-symmetric I-section.  

 

 

 
Fig. 6: Variation of lateral buckling moment of prismatic beam 

with mono-symmetric I-section under gradient moment, versus 

gradient factor : (a) largest flange in tension under (M0), (b) 

largest flange in compression under (M0). 

 

In the case of the prismatic beam with mono-symmetric 

section, the strength of the beam under gradient moment, 

which depends on cross-section deformation, is pictured in 

Fig. 6. One can remark that when the largest flange is in 

tension under M0, the variation of the beam strength with 

gradient coefficient () is linear and the highest and lowest 

resistances are acquired under and 

respectively. When the largest flange is in 

compression under M0 (Fig. 6b), non-linear variation of 

lateral buckling resistance of beam with () is noticed. The 

highest strength is also obtained near . These 

results are in good agreement with Mohri et al., 2013 [23]. 

 

For the tapered thin-walled beam with mono-symmetric 

section, the negative and positive lateral buckling moments 

variations with  are depicted in Fig. 7a, b. Under positive 

and negative gradient moments (Fig. 7), the outcomes of 

proposed finite difference method concord very well with 

ANSYS simulations. It should be noted that the great 

strength of tapered thin-walled beam with mono-

symmetric I-section is obtained under positive gradient 

moment. The highest strength is also obtained near 

. These results are original and have never studied 

before. 

 

 
Fig. 7: Variation of lateral buckling moment of non-prismatic 

beam with mono-symmetric I-section under gradient moment, 

versus gradient factor : (a) largest flange in tension under 

(M0), (b) largest flange in compression under (M0). 

 

4.1.4. Lateral buckling strength of simply supported beam 

with Tee section 

For this cross section, the lowest two buckling moments 

variation versus the gradient moment factor for the 

prismatic and tapered beams are depicted in Figs. 8 and 9, 

respectively. In the case of positive moment loading, it is 

supposed that the flange of Tee section is under 

compression; nevertheless, negative moment loading 

causes tension stress on the flange of Tee section. It is 

observed again that the strength of the beam under gradient 

moment depends strongly on cross-section deformation 

either in the case of the prismatic beam and the tapered one 

(Figs. 8, 9). It should be noted that the great resistance of 

the thin walled beam with Tee section under a gradient 
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moment (M0, M0) is acquired when flange of section is 

in compression under bending moment.  

In the case of thin-walled beam with constant Tee 

section, when the flange is in tension under M0 (Fig. 8a), 

the variation of the beam strength with gradient coefficient 

() is linear and the highest and lowest resistances are 

acquired under and respectively. When the 

flange is in compression under M0 (Fig. 8b), non-linear 

variation of lateral buckling resistance of beam with () is 

observed. The highest strength is obtained near . 

These results are in good agreement with Mohri et al., 

2013 [23]. 

 

 
Fig. 8: Variation of lateral buckling moment of prismatic beam 

with Tee section under gradient moment, versus gradient factor 

: (a) flange in tension under (M0), (b) flange in compression 

under (M0). 

 

For the tapered thin-walled beam, the positive and negative 

lateral buckling moments variations with  are depicted in 

Fig. 9a, b. When gradient factor is positive ( 0  ), 

buckling results derived from finite difference approach 

are in good agreement with ANSYS software predictions, 

but when gradient coefficient is negative ( 0  ), lateral 

buckling moments obtained by present numerical method 

overestimate beam resistance (6% error). It should be 

noted that the great strength of tapered thin-walled beam 

with mono-symmetric I-section is obtained under positive 

gradient moment. The highest strength is also obtained 

near . These results are original and have never 

been studied before.  

 

 
Fig. 9: Variation of lateral buckling moment of tapered beam 

with Tee section under gradient moment, versus gradient factor 

: (a) flange in tension under (M0), (b) flange in compression 

under (M0). 

 

4-2 Example 2- Cantilever web and flanges tapered 

beam under uniformly distributed load: 

This section deals with the stability analysis of three sets 

of cantilever non-prismatic thin-walled beams subjected to 

a distributed load. The linear lateral buckling loads of the 

beams are carried out with the presence of doubly or singly 

symmetric I-cross-sections and also Tee section. In the 

illustrated member, the geometrical properties of the 

clamped end section of the beam are constant; 

nevertheless, the flanges’ width and the web height for all 

considered types of cross-sections are made to vary 

linearly from the fixed end to the free one. The geometrical 

data for the stipulated beams are shown in Fig. 10.  

In the case of doubly symmetric I-section, the linear lateral 

buckling loads are derived for two load positions: load on 

the centroid and the top flange. The stability analysis is 

made for a singly symmetric I-section when the lateral 

distributed load is applied at two different positions: the 

top flange and the bottom one. The critical buckling loads 

for the considered member with Tee section are also 

computed when uniformly distributed load is applied on 

the top flange. Buckling analysis is carried out for different 

beam lengths L=6 to 12m. For this example, shear and 

Young's modulus of material for all considered thin-walled 

beams are taken as G=80.77GPa and E=210GPa, 

respectively.  
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Fig. 10: Cantilever web tapered beam with doubly or singly 

symmetric I-section and Tee section: geometry, material and 

loading properties. 

 

The variation of linear critical buckling loads of the 

cantilever thin-wall beams under lateral distributed load 

with different beam lengths for above mentioned three 

types of cross-sections are illustrated in Figs. 11 to 13. For 

more comparisons, the same figures show the results 

obtained by finite element using ANSYS software. 

According to the above figures, it can be concluded that 

finite difference solutions overestimate the lateral critical 

buckling loads. However, in the case of short beam 

(L=6m), the significant differences between shell 

predictions of ANSYS and the obtained results by 

proposed numerical method are conspicuous. For this case, 

the effects of the distortion, local buckling deformation 

and local influences of lateral load are evident in the 

overall buckling results of shell modeling. None of the 

mentioned phenomena is considered in the formulation of 

the proposed technique based on beam theory. As 

illustrated in Figs. 11 to 13, in the case of long beams (L= 

11 and 12m), the ANSYS results and proposed FDM are 

very close. In these cases, slender beams are obtained, so 

most of the abovementioned problems can be reduced 

consequently.  

 
 

 

 
 

 
Fig. 11: Lateral Buckling loads variation versus length L of the 

tapered beam with doubly symmetric cross section, (a): centroid 

loading, (b): top flange loading.  

 

 

 
Fig. 12: Lateral Buckling loads variation versus length L of the 

tapered beam with singly symmetric cross section, (a): top 

flange loading, (b): bottom flange loading. 
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Fig. 13: Critical buckling loads variation versus length L of the 

Tapered beam with Tee cross section (load on top flange). 

 

 

5. Conclusions  

In the present study, the linear stability analysis of elastic 

tapered thin-walled beam under arbitrary bending loads 

has been investigated using finite difference approach. In 

the presence of arbitrary variation in cross-section and 

external loads, the governing equilibrium equation 

becomes a differential equation with variable coefficients 

in which the classical methods used in stability analysis of 

prismatic members are not efficient and no longer valid. 

The finite difference method is thus adopted to solve the 

fourth-order differential equation with variable 

coefficients of non-prismatic beams with general boundary 

conditions. Finally, the critical buckling loads are obtained 

by solving the eigenvalue problem resulting from a system 

of equations obtained from FDM.  

In order to demonstrate the accuracy and efficiency of 

the FDM, two examples have been considered. Beams with 

different boundary conditions and arbitrary bending loads 

are studied. Effects of end conditions, loading position, 

beam’s length, tapering and cross-section shape have also 

been investigated. The results of the present method have 

been compared to ANSYS code simulations or other 

results available in the literature. In most cases, it could be 

concluded that by discretizing the considered member into 

30-40 divisions the critical buckling loads of non-uniform 

members can be determined with a very good accuracy. 

The FDM is more efficient in the presence of tapering and 

non-symmetric buckling modes. In some complicated 

cases, this method is more accurate than the PSM and 

requires less CPU times. Nevertheless, there are some 

cases in which PSM is more accurate than FDM. The 

results of the current study prove that the CPU time is a 

concern in PSM method, suggesting that using a hybrid 

method, which is a combination of FDM and PSM, can be 

a valuable alternative.  

 

Appendix A 

In this appendix, exact formulations for computation of the 

geometrical characteristics of an open thin-walled section, 

such as , ,z cI J z and I  are presented. In [5], the absolute 

formulations of these parameters are expressed. The 

characteristics of any geometrical properties of the beam 

are a function of the coordinate x due to the tapering of the 

web and/or flanges. In this study, it is assumed that the 

thickness of the web (tw) and flanges (tf) are constant over 

the length of the beam. In the following, the geometrical 

parameters at the left support (x=0) and the right one (x=L) 

of the beam are respectively indicated with the subscripts 

0 and 1. In the present study, doubly symmetric I section, 

singly symmetric I section and Tee section, as shown in 

Fig. A1, are surveyed. 

 

 
 Fig. A1: (a) doubly symmetric I section, (b) singly symmetric I 

section, (c) Tee section. 
 

In the case of doubly symmetric I section, the width of both 

the top and bottom flanges are equal (bft=bfb=bf). For Tee 

section, the width of bottom flange is zero (bfb=0).  It 

should be pointed out that d signifies the height for I 

sections, measured between the flange mid-lines. 

In the case of web tapered, the height of the beam’s section 

is (d0) at the left support and is linearly changed to (

1 0d d ) at the other end. The expression describing web 

linear variation is thus defined as: 

0 0( 1)( )w

x
h d d

L
                                  (A.1) 

In the case of the beam with tapered flanges, the width of 

the top and bottom are respectively made to vary linearly 

to 1 0ft t ftb b   and 1 0fb b fbb b   at the other end with 

different tapering ratios. Therefore, the variation of the top 

and bottom flanges can be respectively expressed as 

follows: 

0 0( 1)( )fT ft t ft

x
B b b

L
                    (A.2) 

( 1)( )fb fb b fb

x
B b b

L
                    (A.3) 

A.1. Expression of the second moment of inertia (Iz):  

The expression of minor axis moment of inertia (Iz) about 

centroid is: 

2 z

A

I y dA                  (A.4) 

By performing integration over the cross-sectional area in 

the context of principal axes, this expression (Iz) for three 

different contemplated sections is reduced to the following 

ones: 

- Doubly symmetric I section: 
3
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- Singly symmetric I section: 
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- Tee section: 
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              (A.7) 

A.2. Expression of the Saint-Venant torsion constant (J): 

The formulation of this coefficient is recalled here [5]: 

2 2( ) ( )

A

J y z dA
z y

  
    

                                 (A.8) 

In the abovementioned formulation, the term ( , )y z  is 

the warping function, which can be defined based on Saint 

Venant’s torsion theory. The Saint-Venant torsion constant 

for a thin-walled open section made from N straight 

segments can be thus obtained as: 
3

1 3

N
k k

k

l t
J



                 (A.9) 

in which, kl  and kt are length and thickness of each 

segment, respectively. Therefore, this parameter (J) for the 

three considered sections is: 

- Doubly symmetric I section: 
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- Singly symmetric I section: 
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- Tee section: 
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A.3. Expression of the position of shear center zc: 

The distance between the shear center and the centroid is 

denoted by zc, which can be determined for each of 

considered open section with the following formulations: 

- Doubly symmetric I section: 

0cz   

- Singly symmetric I section: 

0 0
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Then, one gets:                      (A.14) 
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A.4. Expression of the modified warping constant (


I ): 

The modified warping constant (


I  ) is defined as [5]:  

2

ω c zω
I I z I                              (A.15) 

in which, I   is the classical warping constant used in 

Vlasov’s model: 

2

A

I dA                  (A.16) 

After development in the principal directions, this 

expression (


I ) for three considered open hot-rolled 

sections is derived as: 

- Doubly symmetric I section:                      (A.17) 
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- Tee section: 
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