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Abstract:  

Dynamic analysis of shear building structures (SBS) is achieved using fast wavelet transform 

(FWT). The loads are considered as acceleration of earthquake record. for the analysis, A time 

history dynamic analysis is carried out. A fast wavelet transform is used by which the number 

of points in the earthquake record is reduced by filter bank. In the filter bank method, the low-

pass and high-pass filters are used for the decomposition of earthquake record into two parts. 

One part contains the low frequency, and the other part contains the high frequency of the 

record. The low frequency is the most important part; therefore, this part of the record is used 

for dynamic analysis of structures. A shear building structure is analyzed and the results are 

compared with exact dynamic analysis (EDA) and fast Fourier transform  method. It is 

concluded that the best choice for approximation record was the second and third stage of 

decomposition. Also, overall time for dynamic analysis was reduced using Fwt.  

 

 

1. Introduction 

In general, exact dynamic analysis (EDA) of structures for 

earthquake induced loading is a time consuming process [1]. 

In particular, for large-scale problems, the computational 

time is considerable. This makes the analysis of the 

structures process very inefficient, especially when a time 

history analysis (THA) is considered. Approximate methods 

are used for dynamic analysis in order to reduce analysing 

time. large scale structures or structures which need 

repetitive analysis such as optimization, the application of 

approximate methods will be very useful.  

Although approximate methods reduce calculations 

content, sections designed by dynamic analysis may not be 

the most economical sections. In [2-3] the dynamic analysis 

of beams on elastic foundation subjected to moving point 

loads is studied. In this paper the finite element method was 

used. In [4] the transverse vibrations induced by a load 

moving at a constant speed along a finite or an infinite beam 

resting on a piecewise homogeneous viscoelastic foundation 

is presented. 
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During recent years, many studies have been conducted to 

design the structures under earthquake dynamic loading with 

wavelet transform (WT) [5-10]. Optimization of structures 

induced earthquake loading with wavelet transform has been 

one of the most widely used methods in structural 

engineering [11-16].  

A signal can be expressed as the sum of a series of sinus 

and cosines using Fourier transform (FT) and fast Fourier 

transform (FFT). However, in the FT and FFT methods, 

there is only frequency resolution and no time resolution 

[17-18]. Another disadvantage of the FT is that it cannot 

separate the low and high frequencies of signal [19]. 

The WT is probably recent solution to overcome the 

shortcomings of the FT [20]. In WT a fully scalable window 

is used to solve the signal-cutting problem. The window is 

shifted along the signal and the spectrum is calculated for 

every position. Then this process is repeated many times 

with a slightly shorter or longer window for every new cycle 

for the signal. The result will be a collection of time-

frequency representations of the signal, all with different 

resolutions [20]. 

One of the applications of wavelet in this paper is using a 

WT to produce an approximate earthquake record from a 

major earthquake record [5-10]. In [21-22] a new method 

was presented for modification of ground movements and 

nonlinear response spectrum using WT. 

In this paper, WT is used to predict the extreme point of 

the history response. A shear building structure (SBS) is 
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analysed and the results are compared with exact dynamic 

analysis and FFT method. 

 

2. Basic features of signal processing 

There are two kinds of signal processing, one is continuous 

signal processing and the other is discrete signal processing. 

According to the Shannon sampling theorem, each 

continuous signal processing can be converted into discrete 

signal processing, therefore we focus on discrete signal 

processing. Each point of a signal is called a sample or point. 

Discrete time signals are represented as sequence of 

numbers. A sequence of numbers s, in which the nth number 

in the sequence is denoted as s(n), is formally written as; 

   nnss ,)(                        (1) 

where n is an integer number.  

Signal y(n) is reflex of s(n) with respect to n=0, if each value 

of y(n) is reflex of corresponding value of s(n) namely 

y(n)=s(-n). A sequence y(n)=s(n) is said to be a shifted or 

delayed of a sequence s(n), if y(n)=s(n-n0) where n0 is an 

integer value. Also, s(an) dilates s(n) if |a| > 1 and the 

signal is stretched out, however, if |a| < 1, the signal is 

compressed. In Fig. 1, a signal s(n) is shown for s(-n), s(n-

3), s(n+1), s(0.5n) and s(2n), respectively. The most famous 

basic sequences in the signal processing are unit sample 

sequence, which is defined as follows: 










0n1

0n0
)n(          (2) 

The important aspect of the unit sample sequence (USS) is 

that an arbitrary signal can be represented as sum of scaled, 

delayed USS as follows [20]: 







k

)kn()k(s)n(s                                                 (3) 

This concept will be used in filtering the earthquake record. 

 

3. Discrete signal transformation 

A discrete time system is defined as an operator, which 

maps an input with values s(n) into an output with 

values y(n). One class of this transformation is linear 

transformation. The linear system is defined by the 

principle of superposition. Another class of system is 

time-invariant. A time-invariant system is a system for 

which time delays or shift of the input sequence causes 

a corresponding shift in the output. If a system 

transforms the input s(n) into the output y(n), then the 

system is said to be time invariant if, for all n0 the input 

S1(n)=s(n-n0) produces the output y1(n)=y(n-n0). 

One of the important classes of systems is linear and 

time-invariant systems. These two properties in 

combination lead to especially convenient 

representations for such systems. If the linearity 

property is combined with the representation of a 

general sequence as a linear combination of delayed 

impulses, it follows that a linear system can be 

completely characterized by its impulse response. 

 

 
 

  

 

 

 

 
 

 

Fig. 1: Examples of s(n) with basic properties 

 

 

one of the features of time-invariance implies that if h(n) is 

the response to δ(n) then the response of δ(n-k) is h(n-k), 

therefore it can be written as: 







k

)kn(h)k(s)n(y

 

(4) 

As a consequence of Eq. 4, a linear and time-invariant is 

completely characterized by its impulse response h(n) in the 

sense that, given h(n), it is possible to use Eq. 4 to compute 

the output y(n) for any input s(n). Equation 4 commonly is 

called the convolution sum.  

 

4. Frequency selective filters 

A filter can be used to select different frequencies of a 

signal. A filter is called low-pass if its frequency response 

is located around zero, and is high-pass if it is around 𝜋. In 

filters, the frequency response is unity for a certain range of 

frequencies and is zero for the remaining frequencies. 

Because of the inherent periodically of the discrete time 

frequency response, it is similar to a multi band filter, since 

frequencies around 2𝜋 are indistinguishable from 

frequencies around 0. The frequency response passes only 

low frequencies and rejects high frequencies of the signal. 

Since the frequency response of the signal is completely 

specified by its behavior over the range   , the 

ideal low-pass filter frequency response is more typically 

shown only in range   . It is understood that the 

frequency response repeats with period of 2𝜋 outside the 

plotted range. 

 

5. Wavelet transform 

Wavelet analysis started in the 80’s. Recently, there has 

been a great interest in wavelet applications in analysis and 
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approximation of earthquake [23-24]. The analysis of 

signals often involves a compromise between how well 

sudden variations can be located, and how well long-term 

behavior can be identified. Choosing basis functions well 

suited for the analysis of signals is an essential step in such 

applications.  

Fourier series are examples of basic functions used in 

signal approximation. If a signal is piecewise smooth, with 

isolated discontinuities, the Fourier approximation is poor 

because of discontinuities. Wavelets are well suited to 

approximate piece-wise smooth signals. There is an 

important difference between FT and WT. (sinus and 

casinos) Fourier basis are localized in frequency but not in 

time. Wavelets are local in both frequency and time. So, 

piece-wise smooth signals can be represented by wavelets 

in a more compact way. 

The WT is performed using a single prototype function, 

ψ. Fine temporal analysis is done by contracted wavelets, 

whereas fine frequency analysis uses dilated wavelets. The 

continuous wavelet transform (CWT) of the signal s(n), is 

named CWT(a,b), and defined as follows [25-26]: 


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The wavelets ψa,b(n) are generated from a single basic 

wavelet ψ(n) that is called mother wavelet by scaling and 

translation. a is scaling factor, b represents the translation 

and the factor 1/√𝑎 is for energy normalization across the 

different scales. Equation 5 shows a signal s is decomposed 

into a set of basis functions ψa,b(n). For large a, the basis 

function becomes stretched, while for small a, the basis 

function becomes a contracted wavelet. The most important 

properties of wavelets are the admissibility and the 

regularity conditions and these are the properties that gave 

wavelets their name [27].   

The CWT is highly redundant because (a,b) are 

continuous. The transformation is usually evaluated by a 

discrete set of continuous basis functions. For dynamic 

analysis applications, this redundancy should be removed. 

Also we have an infinite number of wavelets in the WT and 

this number must be reduced to a more manageable number. 

For most functions the wavelet transforms have no 

analytical solutions and they can be calculated only 

numerically. To overcome these problems discrete wavelet 

transform (DWT) have been introduced. This is achieved 

by modifying the wavelet representation in Eq. 6 by:  
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then DWT of Eq. 5 is: 
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Where j and k are integers and 0a 1
is a fixed dilation step. 

The factor b0 depends on the dilation step. The effect of 

discretizing the wavelet is that the time-scale space is now 

sampled at discrete intervals. If DWT is used to transform 

a signal, the result will be a series of wavelet coefficients of 

signal.  

 

6. Fast wavelet transform 

In FWT a scaling function ϕ corresponding to a mother 

wavelet are used. The scaling function in each level is 

defined as: 

𝜓(2𝑗𝑛) = ∑ ℎ𝑗+1(𝑘)𝜓(2𝑗+1𝑛 − 𝑘)𝑘                                     (9) 

where hj+1 is a low-pass filter. The effect of this is that the 

first scaling function can be expressed in terms of the 

second one. This is formally called multi resolution 

formulation or two-scale relation [28]. The two-scale 

relation states that the scaling function at a certain scale can 

be expressed in terms of translated scaling functions at the 

next smaller scale. The scaling function is replaced by a set 

of wavelets and therefore we can also express the wavelets 

in this set in terms of translated scaling functions at the next 

scale. More specifically for the wavelet at level j can be 

written as:  

𝜙(2𝑗𝑛) = ∑ 𝑔𝑗+1(𝑘)𝜙(2𝑗+1𝑛 − 𝑘)𝑘                             (10) 

where gj+1 is a high-pass filter. This equation is the two-

scale relation between the scaling function and the wavelet.  

The signal s could be expressed in terms of translated and 

dilated wavelets up to a scale j-1, this leads to the result that 

s can also be expressed in terms of dilated and translated 

scaling functions at a scale j, as: 

 
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j
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       (11) 

 

If in this equation we step up a scale to j-1, we have to add 

wavelets in order to keep the same level of detail. We can 

then express the signal s as: 
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(12) 

 

This equation is called inverse wavelet transform (IWT) of 

the main signal. If the scaling function ϕj,k(n) and the 

wavelets ψj,k(n)  are orthonormal, then the coefficients 

λj−1(k) and μj−1(k) are found by taking the inner products 

as: 
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By ϕj,k(n) substitution and ψj,k(n) into the inner products 

and by suitably scaled and translated versions of Eqs. 9 and 

10 and manipulating, we obtain an important result [25]. 
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Equations 15 and 16 state the wavelet and scaling function 

coefficients on a certain scale. From discrete signal 

processing theory, we know that a discrete weighted sum 

like the ones in Eqs. 15 and 16 is the same as a digital filter 

and the coefficients λj(k) come from the low-pass part of 

the splitted signal spectrum. The weighting factors h(k) in 

Eq. 15 must form a low-pass filter, and the coefficients 

μj(k) come from the high-pass part of the splitted signal 

spectrum. The weighting factors g(k) in Eq. 16 must form a 

high-pass filter [27]. All the filters used in FWT and IWT 

are intimately related to the sequence ϕ(n). The filter ϕ, 

which is called the scaling filter, is a low-pass filter. for 

filter ϕ, four filters are defined using the following scheme: 

)n(g)n(g)h(QMFg

)n(h)n(hh

RDRR

RDR










 

where QMF is quadrature mirror filter, and defined as:   

N2,...2,1k)k1N2(h)1()K(g
R

1k

R
 

         (17) 

where h and g are low-pass and high-pass filters, 

respectively. Subscript D and R are used for decomposition 

and reconstruction, respectively. 

 

7. The FWT to approximate earthquake record 

The FWT decomposition and reconstruction algorithm is 

used for signals and images. The FWT algorithm is applied 

for DWT. The FWT permits the computation of the WT. At 

each level of transform, the signal is processed through a 

low-pass and a high-pass filter. The high-pass filtered 

signal is known as the detail wavelet coefficients. The result 

of the low-pass transform is then decimated by a factor of 

two and used as input signal at the next level of resolution. 

After the decimation, the same two filters are applied to the 

data.  

As 𝑆̈ shown in Fig. 2, the main earthquake wave has been 

decomposed using wavelet transform and it's high and low 

frequencies have been separated. Detailed wave was similar 

with the main wave but detailed wave is different. The AS̈ 

approximations wave maintains the frequency content of 

the main earthquake wave, it is used as new earthquake 

wave and in next step two new waves are again obtained by 

this wave. At each stage of the decomposition, the number 

of generated wave points is half that of the preceding stage 

wave. In other words, half of the accelerogram points are in 

detailed wave and the other half in approximation wave. So 

by halving the number of earthquake points, the time 

required for dynamic analysis will also decrease with this 

new wave. Next, the resolution is halved and the frequency 

resolution is doubled. This idea for calculating discrete 

wavelet transform, known as the filter bank method, which 

was carried out in the [6] for the earthquake, and had very 

good results. Then, using discrete wavelet, approximations 

wave obtained from the previous stage is decomposed again 

and two new waves including approximations and detailed 

waves are obtained. Again it is obtained for approximations 

wave. It should be noted that the number of stages required 

for DWT depends on the frequency characteristics of 

analyzed signal. 

Finally, the DWT of signal is obtained from composition of 

the outputs of filters in the first stage of filtering. 

 

 

Fig. 2:  Decomposition of record in each level (𝐴𝑆̈0  =𝑆̈ ) 

 

A decomposed signal is also reconstructed using a filter 

bank [24]. This filter bank is an inverse version of the filter 

bank used for up-sampling. It is used for reconstructing a 

low-pass filter (h(D)) and high-pass filter (g(D)). It should 

be noted that these two low-pass and high-pass filters are 

the same filters used in decomposition. As shown in Fig. 2, 

the initial signal has a length of one half of the main 

earthquake signal (N/2), and during two stages of 

reconstruction (Fig. 3), the length is equal to the main signal 

(N). 

 

 

Fig. 3:  Reconstruction of record in each level 

 

8. Numerical examples 

A SBS is analyzed by El-Centro (S-E 1940) earthquake. 

Haar wavelet [24] is used for FWT. The Haar wavelet and 

associated scaling function are as: 
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A moment magnitude of 6.9 and the number of points of the 

El-Centro is 2688. It should be noted that this earthquake 

has not been scaled up. The response of structure is 

calculated by Newmark method [1]. A personal computer 

was used and the analyzing time is calculated. The analysis 

is carried out by following methods: 
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(a) Regular dynamic analysis subjected to main 

record (DAM) 

(b) Dynamic analysis using FFT 

(c) Dynamic analysis using FWT and IWT by signals 

𝐴𝑆̈1, 𝐴𝑆̈2, 𝐴𝑆̈3and 𝐴𝑆̈4. 

The 7-story SBS model shown in Fig. 4 was analysed, with 

this assumption that the floor masses move only 

horizontally. It was assumed that the mass of each rigid 

floor of the model includes the effect of masses of all the 

structural elements adjacent to the floor of the prototype 

building. The mass of each floor is 90 tons. The material 

properties are given as E=2*106 kg/cm2, weight density of 

0.0078 kg/cm3 and damping ratio for all modes of 0.02. 

Total dimension of the studied frame is 12 and 24.5 m. The 

bay length is 6 m and story height is 3.5 m. 

 

 
Fig.4: Shear building of 7 stories 

 

Results of analysis for maximum displacement of each floor 

for all cases for the El-Centro record are given in Table 1. 

The displacement history of the top storey, for DAM, and 

dynamic analysis by 𝐴𝑆̈1, 𝐴𝑆̈2, 𝐴𝑆̈3 and 𝐴𝑆̈4 records are 

shown in Figs. 5 to 9. The results show that, not only the 

maximum displacements of each floor are almost the same, 

but also displacement histories of all the cases are similar. 

The computation time in DAM is greater than FFT, FFT is 

greater than 𝐴𝑆̈1, 𝐴𝑆̈1 is greater than 𝐴𝑆̈2 is greater than 

𝐴𝑆̈3, and 𝐴𝑆̈3 is greater than 𝐴𝑆̈4. The time of analysis for 

DAM, FFT, 𝐴𝑆̈1, 𝐴𝑆̈2, 𝐴𝑆̈3 and 𝐴𝑆̈4 are 2.13, 1.31, 0.77, 

0.41, 0.21 and 0.11 sec., respectively. The results indicate 

that as the decomposition process is continued, the time of 

analysis is reduced but the error involved is increased.   

 

Fig. 5: Displacement history of level 7 using DAM (cm) 

 

 

Fig. 6: Displacement history of level 7 using 𝐴𝑆̈1 (cm) 

  

 

 Fig. 7: Displacement history of level 7 using𝐴𝑆̈2 (cm) 

 

Fig. 8: Displacement history of level 7 using𝐴𝑆̈3(cm) 

 

Fig. 9: Displacement history of level 7 using𝐴𝑆̈4 (cm) 
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9. Conclusions 

Given the numerical results, the following points can be 

concluded: 

(a) The FWT was an effective approach for dynamic 

analysis.  

(b)  The overall time required for dynamic analysis was 

reduced substantially using FWT. 

(c) The difference between the exact and approximate 

analysis was increased as the decomposition was 

continued. 

(d) In each successive decomposition, the time of analysis 

was reduced by a factor of nearly 2 but the error was 

increased by a factor of 2. 

(e)  The best choice for approximation record was the 

second and third stages of decomposition (𝐴𝑆̈2 and 𝐴𝑆̈3), 

because, the error of computation is acceptable. 

(f) we can separate the low and the high frequency of the 

record using FWT. The low frequency of record is 

important, because it contains most of the energy of the 

record and the shape of the low frequency is similar to 

the shape of the main record. Therefore, we can analyse 

the structure against this part. The results are almost 

similar to those of the original earthquake record. The 

error is negligible, in particular in the first stages of 

decomposition.    

 

 

 

 

 

Table. 1: Results of maximum displacement 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Also, the results of Table 1 are shown in figure 10.  

 

 
Fig. 10: Results of maximum displacement 

 
 

Floor 

No. 

Maximum dynamic displacement  (cm) |EXA-(FFT or 𝐴𝑆̈𝑖)|/EXA*100 

EXA FFT 𝐴𝑆̈1 𝐴𝑆̈2 𝐴𝑆̈3 𝐴𝑆̈4 FFT 𝐴𝑆̈1 𝐴𝑆̈2 𝐴𝑆̈3 𝐴𝑆̈4 

1 1.950 1.962 1.977 2.036 2.083 2.154 0.6 1.2 4.1 6.3 9.4 

2 3.754 3.795 3.857 3.929 3.974 4.057 1.0 2.6 4.3 5.4 7.4 

3 5.456 5.510 5.552 5.614 5.633 5.677 0.9 1.7 2.7 3.1 3.8 

4 7.025 7.015 7.006 7.046 7.016 6.982 0.2 0.3 0.3 0.1 0.6 

5 8.351 8.273 8.271 8.175 8.093 7.968 0.9 1.0 2.2 3.2 4.9 

6 9.342 9.299 9.169 8.946 8.831 8.625 0.5 1.9 4.4 5.8 7.3 

7 9.873 9.765 9.627 9.335 9.204 8.953 1.1 2.6 5.8 7.3 10.3 
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