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Abstract: 
In this paper, linear stability analysis of non-prismatic beam resting on uniform Winkler-

Pasternak elastic foundation is carried out based on Eringen's non-local elasticity theory. In 

the context of small displacement, the governing differential equation and the related boundary 

conditions are obtained via the energy principle. It is also assumed that the width of rectangle 

cross-section varies exponentially through the beam’s length while its thickness remains 

constant. The differential quadrature method as a highly accurate mathematical methodology 

is employed for solving the equilibrium equation and obtaining the critical buckling load of 

simply supported beam. Several numerical results are finally provided to demonstrate the effects 

of different parameters such as elastic foundation modulus, nonlocal Eringen’s parameter and 

tapering ratio on the critical loads of an exponential tapered non-local beam lying on Winkler-

Pasternak foundation. The numerical outcomes indicate that the critical loads of pinned-pinned 

beam decrease by increasing nonlocal parameter. Furthermore, results show that the elastic 

foundation enhances the stability characteristics of non-local Euler-Bernoulli beam with 

constant or variable cross-section. It is finally concluded that the effect of non-uniformity in the 

cross-section plays significant roles on linear stability behavior of non-local beam.   

 

1. Introduction 

Due to great progress of nanotechnology, micro/nano- 

sized systems are increasingly being used in different 

modern engineering applications and biomedical devices. 

It is thus essential to exactly predict stability capacity and 

vibration frequencies of these kinds of members.  Due to 
the relevance of micro/nano-sized continuous elements to 

different industries, there are a large number of 

experimental researches (Fleck et al., 1994 [9]; Stolken 

and Eavans, 1998 [24]; Lam et al., 2003 [13]) which have 

been dedicated to survey the static and dynamic behavior 

of these structures. There are significant differences 

between the acquired results from classical continuum 

theories and experimental tests. This can be explained by 

the fact that the vibration and buckling characteristics of 

micro- and nano-scaled elements are strongly size-

dependent and this phenomenon is not considered in 

classical theories in elasticity. It is worth mentioning that 

the classical local theories assume that the stress at a point 

is a function of strain at that point. To date, various size 

dependent continuum theories such as classical couple 

stress theory, modified couple stress theory, strain gradient   

elasticity theory, surface energy theory and nonlocal  
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theory have been expanded. These theories contain 

information regarding the inter-atomic forces and the 

material length scale parameter that is introduced into the 

constitutive equations as a material parameter. In recent 

years, the nonlocal elasticity theory developed by Eringen, 

1983 [8] has been commonly adopted due to its simplicity 

and competency for modelling of micro/nano scaled 

mechanical components (Peddieson et al., 2003 [19]; 

Sudak, 2003 [25]; Reddy, 2007 [21]; Wang and Liew, 

2007 [29]; Phadikar and Pradhan, 2010 [20]; Ghannadpour 

et al., 2013 [10]; Ebrahimi and Salari, 2015 [5]; Ebrahimi 

and Mokhtari, 2015 [6]; Pandeya and Singhb, 2015 [18]; 

Torabi et al., 2015 [26]; Rahmanian et al., 2016 [22]; 

Mercan and Civalek, 2016 [16]; Hosseini Hashemi and 

Bakhshi Khaniki, 2016 [11]). Based on this theory, the 

stress at a reference point is a function of the strains at all 

points in the body. During the recent years, one of the most 

significant nano/micro sized structures is the nano/micro 

beams which have received increasing attention in 

designing nanoactuators, nanowires and micro/nano 

sensors. Besides, elastic flexural members whose cross-

sectional profile change partially or gradually along their 

length, known as non-prismatic elements, are widely 

spread in many engineering applications. This is because 

of their ability in improving both strength and stability of 
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structures. Due to improvements in nanotechnology 

industries and combination of the advantages of non-

prismatic beam and nano-material properties, designers are 

capable of producing nano/micro devices more efficiently 

and with more favorable strength.  The investigations of 

elastic buckling load and natural frequency of members 

lying on elastic foundations is further one of the 

complicated and significant problems in different fields of 

structural, mechanical and foundation engineering.  In this 

regard, different types of elastic foundation models like 

Winkler, Pasternak and Vlasov were presented. The 

Winkler-type elastic foundation is the most popular 

mechanical model used to solve the problems mentioned 

above. In this model, the elastic foundation is considered 

as the limiting case of an infinitely dense distribution of 

translational springs with linear behavior, which are 

independent of each other. However, modelling of the 

elastic foundation by Winkler’s theory was found to be 

inadequate regarding several problems, since this model 

overlooks cohesion of the medium. In order to improve this 

weakness, various two-parameter elastic foundation 

models such as Winkler-Pasternak foundation were 

developed. In this model, an additional layer is considered 

in the widely used Winkler model in order to accomplish 

the effect of shear interactions between the springs. 

Among the first investigations on this topic, the most 

important one is the study of Reddy, 2007 [21], in which 

the analytical solutions of bending, buckling and vibration 

for nonlocal differential elasticity approach of various 

beam theories are developed. Wang et al., 2007 [28] 

investigated the bending vibration problem of micro- and 

nanobeams based on the Eringen’s nonlocal elasticity 

theory and Timoshenko beam assumptions. By using the 

nonlocal continuum rod model, axial vibration of nanorod 

with various end conditions was investigated by Aydogdu, 

2009 [2]. The free vibration and bending of cantilever 

microtubules with nonlocal continuum model and fixed-

free boundary condition were surveyed by Civalek et al., 

2010 [4]. Phadikar and Pradhan, 2010 [20] introduced a 

finite element solution for nanobeams and nanoplates 

using the nonlocal differential constitutive relations of 

Eringen. Based on nonlocal Timoshenko beam theory, 

stability analysis of nanotubes embedded in an elastic 

matrix was also performed by Wang et al., 2012 [30]. 

Akgoz and Civalek, 2013 [1] calculated linear buckling 

response of linearly tapered micro-columns having 

different taper ratios via Rayleigh-Ritz method. The 

surface effects on the nonlinear free vibration of elastically 

restrained non-local beams with variable cross-section 

were examined by Malekzadeh and Shojaee, 2013 [15]. 

Ritz method was utilized by Ghannadpour et al., 2013 [10] 

to investigate the bending, buckling and vibration of 

nonlocal Euler beam with arbitrary boundary conditions. 

Tsiatas, 2014 [27] presented a new influential approach to 

exactly determine stiffness and mass matrices of non-

uniform Euler-Bernoulli beam from inhomogeneous 

linearly elastic material resting on an elastic foundation. 

An investigation on transverse vibration characteristics of 

rotating functionally graded Timoshenko size-dependent 

nanobeams made of porous as well as functionally graded 

material via the semi-analytical differential transformation 

method was accomplished by Ebrahimi and Salari, 2015 

[5] and Ebrahimi and Mokhtari, 2015 [6]. A finite element 

solution was proposed by Pandeya and Singhb, 2015 [18] 

to survey free vibration behavior of fixed-free nanobeam 

with varying cross-section. Free vibration of Timoshenko 

nanobeams with varying cross-section was analyzed by 

Torabi et al., 2015 [26] by adopting generalized 

differential quadrature method. Rahmanian et al., 2016 

[22] analyzed free vibration of carbon nanotube on elastic 

foundation. Mercan and Civalak, 2016 [16] employed 

discrete singular convolution technique to obtain exact 

solution of critical loads for boron nitride nanotube 

(BNNT) on elastic matrix. Additionally, small scale effects 

on transverse free vibration of exponentially tapered 

nanobeams was researched by Hosseini Hashemi and 

Khaniki, 2016 [11]. Recently, based on various nonlocal 

higher order shear deformation beam theories, accurate 

analytical solutions were proposed by Refaeinejad et al., 

2017 [23] for bending, buckling, and free vibration 

analyses of functionally graded nanobeam resting on 

Winkler-Pasternak elastic foundation. 

In this paper, we aim to use the differential quadrature 

method (DQM) for linear stability analysis of 

exponentially tapered non-local beams lying on an elastic 

foundation. The gist of the paper is presented below: 

1- Based on Euler-Bernoulli beam assumption and 

using non-local elasticity theory, the linear equilibrium 

equations are derived from the energy principle for 

exponential tapered beams related to constant compressive 

axial load and resting on uniform Winkler-Pasternak type 

foundation. Due to the complicated mathematical structure 

of the resulting fourth-order differential equation, closed-

form solutions are not accessible. In order to overcome this 

difficulty, the differential quadrature method is adopted. 

2- Regarding the differential quadrature (DQ) rules, 

the resulting differential equation and the related boundary 

conditions are discretized and formulated at pre-specified 

discrete points in the longitudinal direction. Afterwards, 

the governing equation and end conditions are reduced into 

a set of linear simultaneous algebraic equations. The 

smallest real root to the obtained algebraic equation is 

considered as critical buckling load. 

According to the steps mentioned above, several 

illustrative examples are represented to measure the effects 

of non-uniformity ratio, Winkler-Pasternak foundation 

modulus and non-local parameter on critical buckling 

loads of simply supported non-local Euler-Bernoulli beam. 

Comments and conclusions are presented towards the end 

of the manuscript. 

 

2. Derivation of the governing equations  

Consider a straight tapered beam element of length span L 

resting on uniform Winkler-Pasternak elastic foundation 

(Fig. 1) and subjected to a compressive axial load P. We 

consider the right hand Cartesian co-ordinate system, with 

x the initial longitudinal axis measured from the left end of 

the beam, the y-axis in the lateral direction and the z-axis 

along the thickness of the beam. The origin of these axes 

(O) is located at the centroid of the cross-section. It should 
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be noted that the Euler-Bernoulli beam assumptions are 

adopted. According to this theory, the effect of shear 

deformation is neglected and only the influence of flexural 

deformation is taken into consideration in the calculation 

process. Based on Euler beam theory, the longitudinal and 

transverse displacement components can be respectively 

expressed as: 

( , , ) ( )U x y z zw x                                     (1a) 

( , , ) ( )W x y z w x                         (1b) 

In the previous equations, U denotes the axial 

displacement and W signifies the vertical displacement (in 

z direction). 

 
Fig. 1: Tapered beam resting on two-parameter elastic 

foundation 

The equilibrium equations for Euler beam with variable 

cross-section are derived if the first variation of the total 

potential energy vanishes: 

 0 0l f eU U U W                         (2)  

  illustrates a virtual variation in the last formulation. 
lU  

represents the elastic strain energy, 
0U  expresses the strain 

energy due to effects of the initial stresses. Uf   is the energy 

corresponding to uniform elastic foundation and We 

denotes the work of applied loads. For the particular case 

of linear stability context, where the beam is not under any 

external force, one considers that the external load work 

equals to zero.  could be computed using the following 

equation (Mercan and Civalek, 2016 [16]): 

   

 

0

0 0

0

L L
l *

xx xx xx xx
A A

L

w g

dAdx dAdx

k w w k w w dx

      

    

   


         (3) 

In which, L and A express the element length and the cross-

sectional area, respectively. ( l

xx , l

xz ) and 
*

xx are the 

variation of the linear and the non-linear parts of strain 

tensor, respectively. kw and kg denote Winkler elastic 

foundation constant and the second foundation parameter 

modulus in vertical direction, respectively. xx is axial 

stress and 0
xx  signifies initial normal stress in the cross-

section, associated with constant axial force (P): 

0

xx

P

A
                                                                           (4) 

Based on the assumption of the Green’s strain-tensor, the 

strain-displacement relations including the linear and the 

non-linear parts are: 

( )l

xx zw x                     (5a)

       

* 21
( ( ))

2
xx w x                    (5b)  

According to the last formulations, the variation of the 

strain tensor components is given by: 

( )l

xx z w x                      (6a)

       * ( ) ( )xx w x w x                    (6b) 

 
Substituting equations (4) to (6) into relation (3), the 

expression of the virtual potential energy can be carried out 

as: 

 

 

0

0

0

( ( ))

( )

0

L

xx
A

L

A

L

w g

z w x dAdx

P
w w dAdx

A

k w w k w w dx

    

 
    

 

     

 

 



                 (7) 

The variation of strain energy can be formulated in terms 

of section forces acting on cross-sectional contour of the 

elastic member in the buckled configuration. The section 

stress resultants are presented by the following 

expressions: 

xx
A

N dA                     (8a) 

xx
A

M zdA                     (8b) 

N and M are the axial force applied at end member and the 

bending moment, respectively. Using relations (7)–(8), the 

final form of the total potential energy variation () is 

then acquired as: 

   

 

0 0

0

( )

0

L L

L

w g

M w x dx Pw w dx

k w w k w w dx

       

     

 


  (9) 

According to the equation presented above, the first 

variation of strain energy contains the virtual displacement 

( w ) and its derivatives. After appropriate integrations by 

parts, one gets an expression in terms of virtual 

displacement. After some calculations and essential 

simplifications, the following equilibrium equation in the 

stationary state is obtained: 
2 2

2 2
( )g w

d M d w
P k k w

dx dx
                                          (10) 

The boundary conditions of the present beam theory can 

also be expressed as: 

0M                                       Or      0w                   (11a) 

0gM ( P k )w                Or      w=0                     (11b) 

According to the Eringen non-local elasticity model 

(Eringen, 1983 [8]), the stress at a point depends not only 

on the strain state at that point but also on strain states at 

all other points throughout the body. For one dimensional 

elastic material, the nonlocal constitutive relation can be 

written as: 

2

2

lxx
xx xxE

x


  


 


                                                     (12) 



Numerical Methods in Civil Engineering, Vol. 2, No. 3, March. 2018 

 

Where E is the Young’s moduli. μ=(e0a)2 denoting the non-

local parameter; e0 is a material constant which is 

determined experimentally or approximated by matching 

the dispersion curves of plane waves with those of atomic 

lattice dynamics; and a is an internal characteristic length 

of the material (e.g., lattice parameter, C–C bond length 

and granular distance). In general, the nonlocal parameter 

is 0<μ<4.0 nm2 for a single wall carbon nanotubes 

(SWCNTs) [29]. It is important to note that the constitutive 

relation for the shear stress and strain remains the same as 

in the local beam theory for homogeneous isotropic one-

dimensional case (Eringen and Suhubi, 1964 [7]; Eringen, 

1983 [8]). 

Multiplying Eq. (12) by zdA and integration over the cross-

sectional area in the context of principal axes, the 

following expression is obtained: 

 
2 2

2 2
( ) 0

d M d w
M x EI

dx dx
                                     (13) 

In Eq. (13), I signifies the minor moment of inertia about 

y axis. The following bending moment expression for the 

nonlocal beam theory is acquired by substituting the 

governing equation (10) into (13): 

2 2

2 2
( ) (( ) )g w

d w d w
M x P k k w EI

dx dx
                    (14) 

By substituting Eq. (14) into Eq. (10), the nonlocal 

equilibrium equation can be expressed in terms of vertical 

displacement (w) as: 

2 2 4

2 2 4

2 2

2 2

( ) ( )

( ) 0

g

g w w

d d w d w
EI P k

dx dx dx

d w d w
P k k k w

dx dx

 

    





                      (15) 

Extending the above equation results in: 

4 3 2 2

4 3 2 2

4 2

4 2

2

2

2

( ) ( )

0

g g

w w

d w dI d w d I d w
EI E E

dxdx dx dx dx

d w d w
P k P k

dx dx

d w
k k w

dx

 

   

  





                          (16) 

In this study, it is assumed that the width of beam’s section 

(b0) at the left support is made to diminish to (
1 0b b e ) at 

the other end with an exponential variation, while its 

thickness (h0) remains constant (Fig. 2). The variation of 

minor axis moment of inertia and cross-sectional area along 

the length of the beam are thus described as follows: 

0(x)

x

LI I e


                                                                  (17a) 

0(x)

x

LA A e


                                                                (17b) 

The exponential non-uniformity parameter ( ) can change 

from zero (prismatic beam) to a range of [-2 to -0.1] for non-

uniform beams. A0 and I0 are respectively cross-sectional 

area and moment of inertia at the left support (x=0). They 

are defined as: 

3

0 0
0 12

b h
I   and 

0 0 0A b h                                              (18) 

 
Fig. 2: Schematic representation of an exponential tapered 

beam, (a) Constant thickness through beam’s length, (b) 

Exponentially varying width along member. 

Substituting Eq. (17) into (16), the equilibrium equation of 

non-local beam with varying cross-section could be 

rewritten as: 

4 3

0 04 3

2 4
2

0 2 4

2 2

2 2

2 ( )

( ) ( )

( ) 0

x x

L L

x

L
g

g w w

d w d w
EI e EI e

Ldx dx

d w d w
EI e N k

L dx dx

d w d w
N k k k w

dx dx

 












  

    

                       (19) 

Exponential variation of geometrical properties is one of 

the most special cases of non-prismatic member in which, 

few numerical techniques are able to solve the governing 

equilibrium equation. In this regard, closed-form solutions 

of the differential equation (19) are not accessible. In the 

following, the DQM is adopted to solve the equilibrium 

equation of exponentially tapered beams with non-local 

theory. This methodology could be effectively tuned to 

determine the critical buckling loads of beams whose 

geometrical properties vary exponentially along the beam. 

 

3. DQM formulation of the problem 

In the presence of arbitrary variation in geometrical 

properties, the governing equilibrium equation (Eq. (19)) 

becomes a differential equation with variable coefficients 

in which the classical methods used in stability analysis of 

prismatic members are not efficient and no longer valid. 

For such complicated problems, the differential quadrature 

method which was first proposed by Bellman and Casti, 

1971 [3], is employed to solve the resulting fourth-order 

differential equation (Eq. (19)). The basic concept of the 

differential quadrature method is to discretize the 

derivatives of a function with respect to a variable in the 

differential equation at a sample point as a weighted linear 

summation of function values at its adjacent points. 

Governing equations and external boundary conditions are 

thus transformed into a set of linear algebraic equations, 

which can be solved with the aide of a computational 

algorithm to derive an approximate solution of the 

continuous differential equations. For this, it is first 
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required to divide the computational region into Nth 

discrete nodes or list of sampling points spanning the 

domain of solution. Hence, the precision of this numerical 

approach depends on the number and type of adopted 

sampling points. One of the best selection of the sampling 

points in the stability and vibration analyses is the 

Chebyshev-Gauss-Lobatto points: 

1
1 cos ,    

2 1

 if   0 x L    1,2,...,

i

L i
x

N

i N

   
    

  

  

                                     (20) 

Where N is the number of grid points in the longitudinal 

direction. With this coordinate of the mesh points, the 

weighting coefficients can be easily determined. In order 

to facilitate the solution of the stability equation by means 

of the differential quadrature approach, a non-dimensional 

variable ( /x L ) is introduced. The expressions of 

extended form of the equilibrium equation and Eq. (19) can 

be thus transformed to a non-dimensional form as follows: 

4 3 2
2

0 0 04 3 2

4 2 2
2 4 2

4 2 2

2 4
2

2 4

( ) 2( ) ( )

( ) ( ( ) )

( ) 0

g w

d w d w d w
EI e E I e E I e

d d d

d w d w d w
k L k L w L

d d d

d w d w
P L

d d

   
  

  
  


 

 

   

  

     (21a)  

1 1
1 cos ,            

2 1

if   0 1        1,2,...,

i

i

N

i N

   
     

  

   

                                (21b) 

At a given grid point 
i the first order derivative of 

vertical deflection (w) can be approximated as: 

(1)

1

( ) ( )
i

N

jij

j

w A w




                                             (22) 

Where ( )jw   is function values at grid points j (i = 

1,2,…,N). (1)
ijA  denotes the weighting coefficient for the 

first order derivative of deflection. This coefficient is 

computed by the following algebraic formulations which 

are based on Lagrangian interpolation polynomials: 

 

(1)

(1)

1,

( )
     i j

( ) ( )
 , 1,2,...,

            i=j

i

i j j

ij N

ik

k k i

M
for

M
A i j N

A for

 


    


 





(23a) 

Where,  

1,

( ) ( )          1,2,...,

N

i i j

j j i

M for i N

 

           (23b) 

Higher order derivatives of displacement at each grid point 

can be acquired from the first order weighting coefficient 

as follows: 

 

(2) (2) (1) (1)

1 1 1

( ) ( ),
i

N N N

jij ij ik kj

j j k

w A w A A A


  

        (24a) 

(3) (3) (1) (2)

1 1 1

( ) ( ),  
i

N N N

jij ij ik kj

j j k

w A w A A A


  

       (24b) 

(4) (4) (1) (3)

1 1 1

( ) ( ),  
i

N N N
IV

jij ij ik kj

j j k

w A w A A A


  

       (24c) 

Applying the differential quadrature discretization to the 

non-dimensional governing equation (Eq. (21a)) leads to 

the following expression: 

(4) (3)

0 0

1 1

2 (2)

0

1

(4) 2 (2)

1 1

4 2 (2)

1

( )( ) 2( )( )

( )( )

( )

( )

j j

j

N N

ij j ij j

j j

N

ij j

j

N N

g ij j ij j

j j

N

w j ij j

j

EI e A w E I e A w

E I e A w

k A w L A w

k L w L A w

 



 







 

 

 



 



 











 

2 (2) (4)

1 1

( ) 0
N N

ij j ij j

j j

P L A w A w
 

                          (25) 

In the current study, a simply supported beam is surveyed. 

For this, the vertical displacement and bending moment at 

both ends are prevented. The internal bending moment 

equation for Euler-Bernoulli non-local beam theory may 

be rewritten in the following statement in the form of DQM 

as: 

(2) (2)

0

1 1

(2) 2

1

( )

( )

j

N N

ij j ij j

j j

N

g ij j w j

j

M EI e A w P A w

k A w L k w






 



   
     

   

 

 



           (26) 

It is also possible to express the quadrature analog of the 

mentioned above formulations in the following matrix 

forms: 

              

     

   

     

(4) (3) (2)

(4) (2)2

(2)4 2

(2) (4)2

( )

( )

( ) 0

g

w

a A w b A w c A w

k A L A w

k L L A w

P L A A w







 

 

 

  

              (27a) 

        

   

(2) (2)

(2) 2( )g w

M a A w P A w

k A L k w





  

 
                          (27b) 

 In which: 

0
j

jk jka EI e

                 (28a) 

02 j

jk jkb EI e


                                                        (28b) 

2

0
j

jk jkc EI e


                                                        (28c) 
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   1 2 3( ) ( ) ( ) . . . ( )nw w w w w             (28d) 

In order to acquire the critical loads more easily, Eq. (27a) 

can be transformed into the following eigenvalue problem: 

        0S GK K P K w                                       (29) 

In which, K, KS and KG are N N matrices. As mentioned 

previously, N denotes the number of grid points along the 

computation domain ( 0 1   ). These terms are thus 

determined in the following forms: 

          
(4) (3) (2)

K a A b A c A                         (30a) 

     
(2) (4)2

GK L A A                                          (30b) 

     

 

(4) (2)2

(2)4 2

( )

( )

S g

w

K k A L A

k L L A





 

 
                                 (30c) 

Additionally, the nonlocal boundary condition is expressed 

as: 

        G SM R w P R w R w                        (31a) 

  
(2)

[ ]R a A                                                          (31b) 

 
(2)

[ ]GR A                                                            (31c) 

 
(2) 2[ ]S g wR k A L k                                            (31d) 

For numerically implementing the natural boundary 

conditions, Eq. (27b) is transformed to the following 

expressions:  

        0 0 0 0

 0

   G S

at

M R w P R w R w

  

  
             (32a) 

        1 1 1 1

 1  

   G S

at

M R w P R w R w

  

  
               (32b) 

Therefore, Eq. (27a) is converted to: 

        0t St GtK K P K w                             (33a) 

     0 0 0

1 1 1

;     ;     

S G

t St S Gt G

S G

K KK

K R K R K R

R R R

    
    

      
         

    (33b) 

In the case of pinned-pinned members, the vertical 

displacement at both ends is equal to zero. This boundary 

condition can be easily contemplated by eliminating the 

first and Nth rows and columns of the obtained matrices 

([Kt], [KSt] and [KGt]). Finally, we have: 

   0t St GtK K P K w                                    (34a) 

   2 3 4 1. . . nw w w w w                          (34b) 

Afterwards, the critical buckling loads for exponentially 

tapered non-local beam lying on uniform Winkler-

Pasternak foundation can be computed from the 

eigenvalues of Eq. (34a). 

4. Numerical results 

In the previous sections, the equilibrium equation of non-

local beam with exponentially varying width and lying on 

two-parameter elastic foundation was formulated and 

numerically solved for linear stability analysis. In order to 

demonstrate the effects of three different factors namely: 

nonlocal Eringen’s parameter, tapering ratio and elastic 

foundation on the axial critical load, several illustrative 

examples are provided in the current section and solved via 

the proposed mathematical methodology. The following 

non-dimensional parameters relating to Winkler and 

Pasternak constants as well as critical load are used to ease 

and simplify presentation of the acquired numerical 

values: 
4

0 0

w w

L
k k

E I
                 (35a) 

2

0 0

G G

L
k k

E I
                                                             (35b) 

2

0 0

cr
nor

P L
P

E I
                                                                  (35c) 

In the present study, the non-dimensional Winkler and 

Pasternak modulus parameters for uniform two-parameter 

foundation are taken into account in the range of 0–100 

and 0–10, respectively (Liew et al., 2006 [14]; Murmu and 

Pradhan, 2009 [17]; Khajeansari et al., 2012 [12]). 

The aim of the first part of the current section is to define 

the needed number of points along the longitudinal 

direction while using DQM to obtain an acceptable 

accuracy on critical elastic buckling loads. Regarding this, 

Table 1 gives the first non-dimensional buckling load 

parameters (Pnor) of simply supported prismatic beams 

with non-local theory. The convergence study is carried 

out for various values of non-local parameter. The effects 

of the number of sampling points used in DQM on 

convergence are also displayed in Table 1. The obtained 

results by the proposed numerical technique have been 

compared with the closed-form solution introduced by 

Reddy, 2007 [21]. It is clearly seen from Table 1 that 

twenty number of grid points (N=20) are sufficient to 

obtain the lowest buckling load parameters for different 

nonlocal parameters with desired accuracy.  
After noticing the results presented in Table 1, it can 

also be concluded that the elastic buckling loads calculated 

by employing local theory (=0) are overestimated. 

Regarding this, a decrease in buckling parameter of 33 

percent is evident for the increase of nonlocal parameter 

from 0 to 5. This statement can be explained by the fact 

that the flexural stiffness of pinned-pinned Euler-Bernoulli 

beam with non-local theory is inversely proportional to the 

Eringen’s parameter. In general, the inclusion of the 

nonlocal effect increases the deflection, which in turn leads 

to a noticeable decrease in the value of the stiffness and 

rigidity of the member and consequently a weaker member 

is obtained. Since the linear buckling resistance of beam is 

directly proportional to the stiffness of the member, a 

significant decrease in the critical load of the beam is thus 

observed. 
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Table 1: Convergence of the differential quadrature technique 

in determination of the lowest non-dimensional critical buckling 

load parameters (Pnor) for uniform beam with different non-

local parameters 

( 

DQM Reddy, 

2007 

[21] 

Number of points along x-direction  

5 10 15 20 30 

0.0 9.9678 9.8696 9.8696 9.8696 9.8696 9.8696 

0.5 9.4946 9.4055 9.4055 9.4055 9.4054 9.4055 

1 9.0643 8.9830 8.9830 8.9830 8.9830 8.9830 

1.5 8.6713 8.5969 8.5969 8.5969 8.5969 8.5969 

2.0 8.3109 8.2426 8.2426 8.2426 8.2426 8.2426 

2.5 7.9794 7.9163 7.9163 7.9163 7.9163 7.9163 

3.0 7.6732 7.6149 7.6149 7.6149 7.6149 7.6149 

3.5 7.3897 7.3356 7.3356 7.3356 7.3356 7.3356 

4.0 7.1264 7.0761 7.0761 7.0761 7.0761 7.0761 

4.5 6.8812 6.8343 6.8343 6.8343 6.8343 6.8343 

5.0 6.6523 6.6085 6.6085 6.6085 6.6085 6.6085 

 

In the next step, the descendant effect of non-local 

parameter on first four axial critical loads of non-local 

beam with uniform cross-section is shown in Fig. 3. 

 

 
Fig. 3: Effect of non-local parameter () on the first four 

normalized buckling loads of uniform beam 

 

 

(a) 

(b) 

Fig. 4: Effects of the non-local parameter () on the normalized buckling load of exponential-tapered beam with different tapering ratios: 

(a) first mode (b) second mode 

 

Regarding Fig. 3, similar trends in the outcomes are 

observed. It is also evident that the non-local parameter has 

more influence on higher buckling modes compared with 

the lower ones.  It can be stated that, it is necessary to 

contemplate the non-local theory for exact estimation of 

critical loads related to higher buckling modes of nano-

sized beams.  

Following the above-mentioned procedure, the lowest 

normalized buckling load parameters (Pnor) for various 

exponential non-uniformity ratios () with different 

nonlocal parameters () are arranged in Table 2. 
 

 

 

Table 2: Normalized buckling load parameter of exponentially 

tapered non-local beam for different non-uniformity ratios and 

non-local parameters 

( 
Non-local Parameter ()  

0 1.0 2.0 3.0 4.0 5.0 

0.0 9.870 8.983 8.243 7.615 7.076 6.608 

-0.2 8.921 8.118 7.448 6.879 6.391 5.968 

-0.4 8.046 7.318 6.710 6.195 5.752 5.369 

-0.6 7.241 6.580 6.028 5.561 5.159 4.811 

-0.8 6.502 5.902 5.400 4.975 4.611 4.294 

-1.0 5.826 5.280 4.824 4.438 4.106 3.818 

-1.2 5.210 4.713 4.298 3.946 3.644 3.382 

-1.4 4.649 4.196 3.818 3.497 3.222 2.983 

-1.6 4.140 3.727 3.382 3.090 2.839 2.622 

-1.8 3.679 3.303 2.988 2.722 2.494 2.295 

-2.0 3.263 2.920 2.633 2.390 2.182 2.002 
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Moreover, Fig. 4 illustrates the variation of the first two 

normalized buckling loads of exponentially tapered non-

local beam with respect to the tapering ratio () and the 

non-local parameter () for simply supported beams. 

 

 

 
Fig. 5: Variation of normalized buckling load of uniform beam 

versus Winkler type parameter for three different values of 

Pasternak parameter 

 

Comparing the results of prismatic beam depicted in Table 

1 with those related to non-prismatic ones (Table 2 and 

Fig. 4),  it can be culminated that for any value of non-local 

parameters, the corresponding buckling load for the beam 

with uniform cross-section is the highest and that for 

tapered beam with the non-uniformity ratio (-2) is the 

lowest. This manifest is reasonable due to the fact that an 

increase in taper ratios causes reduction in cross-sectional 

area and moment of inertia and consequently in the 

stiffness of the elastic member. Moreover, it is easily 

observed from Fig. 4 that the variation of non-local 

parameter has an important impact on the buckling 

capacity of non-uniform beams with pinned-pinned end 

conditions. It can also be stated that the critical buckling 

load parameters corresponding to the first mode rapidly 

diminish as the non-local parameter increases. Similar 

behavior is observable for the second non-dimensional 

buckling load parameters (Fig. 4b). 

          

 
Fig. 6: Variation of normalized buckling load of tapered beam () versus Winkler type modulus for three different values of Pasternak 

parameter 
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(a) 

 

 

(b) 

 
Fig. 7: Variation of normalized buckling load of prismatic beam for different Winkler and 

Pasternak foundation parameters, (a) , (b) 

(a) 

 

(b) 

 
Fig. 8: Variation of normalized buckling load of non-uniform beam (=-1) for different Winkler and 

Pasternak foundation parameters, (a) , (b) 
 

 

In the last section, the influence of uniform Winkler-

Pasternak foundation on the linear buckling resistance of 

uniform and exponentially tapered simply supported  

beams based on non-local theory are surveyed. In the case 

of tapered beam, the non-uniformity parameter is taken to 

be =-1. The variation of the lowest buckling load 

parameters for uniform and exponentially tapered Euler-
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Bernoulli beams versus the elastic foundation constant (

wk ) with three different Pasternak parameter values are 

respectively presented in Figs. 5 and 6. As presented in 

Figs. 7 and 8, the simultaneous influence of two foundation 

constants namely: Winkler and Pasternak on the buckling 

capacity of the contemplated beams with two different 

non-local parameters are surveyed. 

As can be seen, the variations of Winkler and Pasternak 

elastic foundation parameters have a significant influence 

on the linear stability behavior of local and non-local 

beams under varying circumstances. It is also observed 

from these illustrations that the Winkler type foundation 

has a little more impact on the buckling resistance of 

simply supported beam, in contrast with the Pasternak 

layer modulus. In addition, it can be culminated from these 

figures that the critical buckling load parameters 

corresponding to the first mode are increased as the 

stiffness of the elastic foundation increases. In other words, 

the numerical outcomes show that the elastic foundation 

has a stabilizing effect on the stability characteristics of 

simply supported non-local beams with constant or 

variable cross-section.  

 

5. Conclusions 

 In this research, nonlocal elasticity theory and Euler-

Bernoulli beam assumptions are adopted to formulate the 

equilibrium equation of non-uniform beam lying on two-

parameter elastic foundation. In the presence of arbitrary 

variation in cross-section, the governing equilibrium 

equation becomes a differential equation with variable 

coefficients in which the classical methods used in stability 

analysis of prismatic members are not efficient and no 

longer valid. Differential quadrature method (DQM) is 

thus utilized for the numerical solution of the resulting 

fourth-order differential equation and calculation of the 

axial critical load. The influences of non-local parameter, 

tapering ratio, Winkler type spring constant and Pasternak 

type shear constant on the critical buckling load of 

exponentially tapered non-local beam with pinned-pinned 

end conditions are studied in detail. From the results of the 

present study, the following conclusions can be addressed: 

- In most cases, it can be concluded that by considering the 

small number of grid points in DQ approach, the critical 

loads related to the first few buckling modes of non-local 

beam with exponentially varying width and resting on 

elastic foundation can be determined with very good 

accuracy. Therefore, the current study reveals the power of 

differential quadrature method in solving differential 

equations with variable coefficients. 

- The increase of the nonlocal parameter causes to decrease 

the critical buckling loads. The linear stability capacity of 

non-local beams with constant or variable cross-section is 

smaller than their local counterparts.  

- The numerical outcomes show that the small scale effects 

are more significant for higher buckling modes, and thus 

the small scale effect is not ignorable.  

- The buckling strength of exponentially tapered beam is 

smaller than that of beam with uniform cross-section. 

- It can be stated that the non-dimensional buckling load 

parameter for prismatic beam decreases more by 

increasing non-local parameter with respect to the 

exponentially tapered beam. 

- Finally, it is observed that Winkler and Pasternak 

constants improve the stability characteristics of non-local 

beam with constant or variable cross-section. 
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