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Abstract: 

In hybrid simulation, the structure is divided into numerical and physical substructures to 

achieve more accurate responses in comparison to a full computational analysis. As a 

consequence of the lack of test facilities and actuators, and the budget limitation, only a few 

substructures can be modeled experimentally, whereas the others have to be modeled 

numerically. In this paper, a new hybrid simulation has been introduced utilizing Least Square 

Support Vector Machine (LS-SVM) instead of physical substructures. With the concept of 

overcoming the hybrid simulation constraints, the LS-SVM is utilized as an alternative to the 

rate-dependent physical substructure. A set of reference data is extracted from appropriate test 

(neumerical test) as the input-output data for training LS-SVM. Subsequently, the trained LS-

SVM performs the role of experimental substructures in the proposed hybrid simulation. One-

story steel frame equipped with Magneto-Rheological (MR) dampers is analyzed to examine the 

ability of LS-SVM model. The proposed hybrid simulation verified by some numerical examples 

and  results demonstrate the capability and accuracy of  this new hybrid simulation.

D

D 

1. Introduction 

Currently, hybrid simulation has become more popular, 

especially in earthquake engineering, due to the advantages 

of this technique. In this method, the structure is divided into 

two main parts: The numerical (or finite element model) and 

the experimental (or physical) part. In this novel technique, 

the important parts that possess complex behavior are tested 

experimentally and the remaining structures which can be 

precisely modeled by finite element tools are modeled 

numerically. The users can perform accurate tests with 

affordable costs and acceptable focus on the main part by 

means of hybrid simulation. Combining the numerical and 

experimental part was executed in 1969 to introduce the 

concept of Pseudo-Dynamic test (Hakuno M 1969 [11]). 

From that point, many types of researches have been 

performed to develop and verify hybrid simulation 

(Takanashi and Nakashima 1987[23]) and (Mahin, Shing et 

al. 1989[15]). 
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Facilities play a key role in the execution of hybrid 

simulation. Therefore, insufficient facilities would restrict 

the usage of hybrid simulation exclusively to structures with 

limited substructures. In hybrid simulation, numerical and 

experimental errors cannot be eliminated under any 

circumstance. As indicated in Fig.1, the experimental setup 

introduces various sources of error in hybrid simulation that 

can have the most substantial influence on the simulation 

results. These errors include actuator tracking errors and 

controller tuning, calibration errors of instrumentation and 

noise generated in measurement instrumentation and A/D 

converters. Usually, numerical errors can be reduced 

beyond the desired precision for results by following certain 

modeling and analysis guidelines. The errors in 

experimental substructures can also be reduced by proper 

tuning and calibration of test equipment and using high-

performance instrumentation, although it is virtually 

impossible to entirely eliminate the experimental errors. 
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Fig. 1: Sources of error in hybrid simulation (Ahmadizadeh and 

Mosqueda, 2009[2]). 

 
In feedback systems like hybrid simulation, even small 

errors can accumulate during the experiment and 

significantly alter the simulation outcome, yielding 

inaccurate or unstable results. This is due to the fact that in 

time-stepping integration algorithms, experimental 

measurements contaminated by errors are used to compute 

subsequent commands. Hence, it is imperative to recognize 

the most important sources of error in hybrid simulation and 

seek ways to minimize and compensate these errors 

(Ahmadizadeh and Mosqueda, 2009 [2]). 

 Model updating and hysteresis identification of 

substructures is a method for overcoming the limitation of 

hybrid simulation. Hysteresis is not a unique phenomenon 

or a one to one mapping problem. Updating hysteretic 

behavior (Yang, Tsai et al. 2012 [29]), material constitutive 

relationship (Elanwar and Elnashai 2016 [7]) and sectional 

constitutive models (Wu, Chen et al. 2016 [26]) of the 

experimental part include three approaches, all of which are 

deployed for calibrating the corresponding numerical 

substructures. Initially, Neural network is used as predictor 

of incremental forces on the specimen to achieve the 

displacement of the system (Zavala et al., 1996 [31]). In 

addition, it is also used for substructure online tests to 

predict the nonlinear hysteresis characteristics for shear 

frames (Yang and Nakano 2005 [28]). Combining neural 

network as an informational and mathematical model to 

achieve a more accurate response of beam to column 

connection was yet another attempt, to gain advantage of 

hybrid simulation (Yun, Ghaboussi et al. 2008 [30]). 

Multilayer feed-forward neural networks (MFFNNs) and 

NARX, as general approximator tools, are utilized for 

modeling and identification of hysteresis (Farrokh, Dizaji et 

al. 2015 [9]). By including additional variables, these 

systems can learn the one to many mapping problems like 

hysteresis in spite of incorporating some restrictions. 

Farrokh (2018 [8]) proposed a new model for 

identification of the hysteretic behavior based on the 

learning capabilities of the LS-SVMs. The model first 

converts hysteresis, which is a multiple-valued nonlinearity, 

into a one-to-one mapping by means of the classical 

hysteresis stop operators similar to the Preisach model. Then 

the mapping is learned by an LS-SVM. Preisach model has 

superiority over the models and takes advantage of NARX-

based since they cannot construct a complete memory for 

hysteresis and are prone to error accumulation due to the 

required feedback. In addition, it has some advantages over 

the neural-based hysteresis models because LS-SVMs have 

fewer problems in architecture determination and 

overfitting. Although this intelligent hysteresis model is 

mathematically equivalent to its origin, the Preisach model, 

practically can be applied more easily than the Preisach 

model owing to its LS-SVM part which acts as an intelligent 

tool.  

In this paper, it has been shown that the improved pre-

mentioned model can be successfully utilized instead of MR 

damper as substructure in hybrid simulation. The 

architecture of the input layer of the model has been 

improved for identification of MR dampers. LS-SVM can 

learn hysteresis model of material and with the concept of 

overcoming the hybrid simulation restrictions, LS-SVM will 

be utilized as an experimental substructure in hybrid 

simulations. By easing the assessment of proposed hybrid 

simulation, virtual hybrid simulations with the help of 

OpenSees and UI-SIMCOR (Kwon, Nakata et al. 2007 [14]) 

(as the coordinator software) are executed to investigate the 

new method. In this technique the reference data for training 

the LS-SVM is achieved from numerical models instead of 

experimental data. Consequently, the LS-SVM will perform 

the role of experimental substructures in hybrid simulation. 

Models of one story frames are designed to verify the ability 

of LS-SVM for hybrid simulation. The corresponding 

results exhibit the ability and accuracy of this new proposed 

hybrid simulation and demonstrate the high capability of the 

enhanced model for MR damper. The model for MR 

dampers are assessed as a substructure with different 

excitations, and the application of the model for MR damper 

is discussed. The results indicate the high ability of this 

proposed hybrid simulation. 

2. Least square support vector machine (LS-SVM) 

Supervised learning systems that analyze data and recognize 

patterns, known as support vector machines (SVMs), are 

used for classification (machine learning) and regression 

analysis. Support Vector Machines (SVMs) were introduced 

in 1992 (Boser, Guyon et al. 1992[3]). In this method, one 

maps the data into a higher dimensional input space and the 

other constructs an optimal separating hyperplane in this 

space (more information is available in “Least Square 

Support Vector machine by Suykens et al.”) (Suykens, Van 

Gestel et al. 2002 [22]). The soft margin classifier was 

introduced by Cortes and Vapnik (1997 [5]), and later, the 

algorithm was extended to the case of regression by Vapnik 

(Vapnik, Golowich et al. 1997 [24]). SVMs can be used as 

linear and nonlinear classifiers as well as function 

approximators actually known as sparse kernels. The 

standard form of the SVMs adopts ε-insensitive loss 

function while LS-SVMs utilize squared loss function. In 

this version, one finds the solution by solving a set of linear 

equations instead of a convex quadratic programming (QP) 

problem for classical SVMs. Least squares SVM classifiers 

were proposed by Suykens and Vandewalle (1999 [21]). LS-
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SVMs are a class of kernel-based learning methods. The 

main relations utilized to estimate the static function by LS-

SVMs are presented in the following equations(Farrokh 

2018[8]). First, the input data maps z to a high dimensional 

feature space by LS-SVM and approximates the output f 

through a linear regression by equation (1):   

  bψf  zwz
T)(  (1)  

Where w is a weight vector, b is the bias, and ψ (.) indicates 

a nonlinear mapping from the input space to a feature space.  

Equation (1) approximates the unknown nonlinear function 

f=f(z). Assuming training data set  N
mm

m f
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z  where N 

represents the number of training data set, its training can be 

expressed by the following optimization problem in the 

primal weight space: 
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Where em is residual error    

To solve the optimization problem, a Lagrangian function 

for the problem is considered as follows  
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Where αn are Lagrange multipliers. Optimization problem 

from the primal form (feature space) is converted to the dual 

form by means of the Karush-Kuhn-Tucker conditions. By 

utilizing these conditions and eliminating the variables w 

and e, parameters α and b are obtained according to the 

following set of equations: 




















































fα

I
Ω1

1 0

γ

0 T b

N

N

 

(5) 

Where fT = [f1, f2,...,fN], αT = [α1, α2,...,αN], 𝟏𝑁
𝑇  = [1, 1,...,1], 

and I is an identity matrix of size N. The vector α is called 

support vector and its components are αm = γem, m = 1, 2, N 

where γ represents the regularization factor. This factor 

controls the trade-off between weight and residual squared 

error terms in equation (2). By employing the kernel trick, 

the Gram matrix Ω is defined as follows: 

      Nnmψψ nm
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(6) 

where K(.,.) denotes a predefined kernel function. The role 

of the kernel function is to avoid the explicit definition of the 

mapping ψ(.). The resulting LS-SVM model for function 

approximation becomes 
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where αm and b are the solution of the linear set (5). The 

solution is unique if the Mercer kernel is utilized (Murphy 

2012 [17]). In this case, the Gram matrix Ω is positive 

definite.  

The simplest form of kernels is 

mmK zzzz
T),(   (8) 

which converts LS-SVM to a linear regression. The Radial 

Base Function (RBF) kernel which is widely utilized in 

nonlinear function estimation has been used in this research 

as follows: 
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where ‖ ∙ ‖ represents Euclidean distance and σ denotes 

width parameter. Both aforementioned kernels are Mercer; 

therefore, αn and b can be uniquely determined by equation 

(5) for pre-assigned hyper-parameters σ and γ. 

2.1.  Prandtl neural network hysteresis model (PNN) 

The numerical modelling of hysteretic behavior is 

challenging. To overcome this problem, Joghataie and 

Farrokh (2008 [18]) proposed Prandtl neural network based 

on the Prandtl Ishlinskii operator. Prandtl proposed to model 

the elastic-plastic behavior of materials with the following 

relation (Visintin 1994 [25]): 

 drtx
r

rwtf 




0
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In equation (10) w(r)=density function; εr =elastic-plastic 

(stop) operator; r=yield point of stop operator; x(t)=input 

signal; and f(t)=output signal. For positive real values, the 

integration over r can be defined. Equation (10) is known as 

classical Prandtl–Ishlinskii model that is also called stop 

operator. The output is calculated by weighted summation 

of immense number of stop operators. A stop operator is 

illustrated in Figs. 2(a)-(b). In Fig. 2(a) the mass is 

connected to a spring with unit stiffness. The threshold 

friction force is assumed as r. Regarding the force applied to 

spring z (output variable) and displacement of A as x (input 

variable), the mechanism of stop operator can be defined. 

The stop operator in the Prandtl model is rate independent; 

as a result, the input-output diagram remains unaffected 

regardless of the rate of variation of the input. Thus, for 

representing the state of a stop operator, the relative extrema 

of the input is sufficient (Brokate and Sprekels 1996 [4]). 

Accurately, the memory of a stop operator is affected by a 

subset of the relative extrema according to the so-called 

wiping out or deletion property (Mayergoyz 1991[16]), 

where each stop operator generates a nested hysteresis loop. 

As shown in Fig. 2(b), each stop operator is odd symmetric 
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with respect to the center point of its own hysteresis loop 

(Joghataie and Farrokh 2008 [13]). 

 

 
 

(a) Mechanism of stop operator (b) Hysteresis of stop operator 

Fig. 2: Mechanism and hysteresis of Stop operator (Farrok

h, Dizaji et al. 2015 [9]) 

 

The connection between the input and output signals of a 

stop operator can be represented by analytical form for 

piecewise monotonic input. By defining ti = i∆t and 

monotonic input in [ti, ti+1), equation (11) can be written as: 

 )()( txtz r  (11) 

Where r is Prandtl parameter (yield point of stop operator) 

and εr as stop operator can be calculated by recurrence 

according to Eq. 12  
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2.2.  LS-SVM hysteresis model 

In this paper, preliminary model proposed by Farrokh 

(2018[8]) which is inspired by Preisach hysteresis that 

contains discrete hysteresis memory and multivariate 

function, is enhanced and a new version for modeling MR 

damper hysteresis is introduced. While Farrokh (2018[8])’s 

model was able to receive only one input, the new model 

proposed in this paper is capable of receiving two inputs, and 

the input for stop operator is unlike Farrokh (2018[8])’s 

model. At first, Farrokh (2018[8])’s model converts 

hysteresis into one-to-one mapping by stop operators 

(classical hysteresis operator), then the converted mapping 

is learned by LS-SVM. Details of the model is presented in 

Fig.3. 

 

Fig. 3: LS-SVM hysteresis model architecture (2018[8]) 

The discrete hysteresis memory part consists of n stop 

operators with distinct threshold values r1, r2, …., rn. These 

threshold values are assigned according to equation (13); 

where |𝑥|max is the maximum of the input signal absolute 

values. 
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LS-SVM has been chosen for modeling the second part 

(multivariate static function) in order to estimate the 

memoryless functional εr in equation (11). Compared with 

the neural networks, LS-SVMs take advantage of the error 

functions with unique global minimum with respect to their 

weights. As mentioned earlier, training of the LS-SVM will 

be executed in one step through equation (5), with 

preassigned hyper-parameters γ and σ. High generalization 

ability of the model relies on the appropriate tuning of these 

hyper-parameters. The tuning process is performed in two 

successive stages: 1) Coupled Simulated Annealing (CSA) 

(Xavier-de-Souza, Suykens et al. 2010[27]) which 

determines suitable values for hyper-parameters and 2) 

Nelder-Mead simplex algorithm (Nelder and Mead 1965 

[18]) which uses these previous values as starting values in 

order to perform a fine-tuning of the hyper-parameters. 

Afterwards, the training of LS-SVM is done with the 

optimum hyper-parameters on the training data. The tuning 

and training procedures in this study have been implemented 

by utilizing MATLAB LS-SVMlab Toolbox (Version 1.8) 

(De Brabanter, K., et al. 2011 [6]). 

2.3. Utilizing the LS-SVM hysteresis model for 

different dampers 

In this section, an explanation of steps for training and 

testing of dampers will be elaborated. An appropriate test is 

a test which covers the upper and lower bounds of 

displacement and velocity that has been experienced by sub-

structure. The classification of damper should be initially 

done by putting them in rate-dependent or rate-independent 

group. Then, by considering the application of dampers, the 

ranges of their displacement and velocity have to be covered 

by utilizing proper excitations. For instance, the MR damper 

in one story building will experience 0.01 m and 0.4 m/s 

displacement and velocity, respectively. By considering the 

limits in the previous step, proper excitations are used for 

MR damper. Third, the suitable input for input layer and stop 

operator are chosen. Finally, with the help of MATLAB LS-

SVMlab Toolbox (Version 1.8) (De Brabanter, K., et al. 

2011 [6]), the training process is accomplished and if it is 

satisfactory then the model should be tested by other 

excitations; otherwise the excitation, input layer or some 

tuning parameters in LS-SVMlab Toolbox should be 

modified. In Fig. 4, the steps for utilizing LS-SVM 

hysteresis model for dampers are illustrated.  
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Fig. 4: Procedure of training and testing of LS-SVM hysteresis 

model 

 

3. Magneto-rheological dampers (MR damper) 

MR dampers are adaptable and reliable semi-active devices, 

which have a large force capacity but require low power 

levels to achieve them (Friedman, Zhang et al. 2010[10]). 

MR dampers are intrinsically nonlinear and rate-dependent 

devices. Therefore, preparing an efficient and accurate 

model for describing their behavior is a highly challenging 

task (Jiang and Christenson 2012[12]). Generally, the 

damper modeling is divided into parametric and 

nonparametric models. In the parametric models, the device 

is modeled as a collection of linear and nonlinear springs and 

dampers, then the corresponding parameters are expressed 

as mathematical equations. In the non-parametric method, 

the damper can be modeled with functions or ANN (artificial 

neural network) (Sapiński and Filuś 2003[19]). 

3.1 Analytical Modeling of MR damper 

The Spencer phenomenological model, one of the most 

popular models, has been chosen for simulation of MR 

damper (Fig. 5). The model is based on the response of a 

prototype MR damper which is obtained for evaluation from 

the Lord Corporation. The damper force of Spencer’s model 

can be written by equation (14), where z and y are defined as 

equation (15) and (16), respectively. The model parameters 

depend on the voltage V as written in equation (17), where u 

represents the output of the first-order filter equation (18). 

The fourteen parameters for Spencer’s model are defined in 

Table 1 (Spencer Jr, Dyke et al. 1997 [20]).  

 
Fig. 5: Modified Bouc-Wen model for MR damper (Spencer 

Jr, Dyke et al. 1997 [20]) 
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Table 1. Optimized parameters for the generalized model 

(Spencer Jr, Dyke et al. 1997 [20]) 

Parameter Value Parameter Value 

c0a 0.21 N.s/m αa 1.40 N/m 
c0b .035 N.s/m. V αb 6.95 N/m .V 
k0 0.469 N /m γ 0.0363 m-2 

c1a 2.83 N.s/m  β 0.0363 m-2 
c1b 0.0295 N.s/m .V A 301 
k1 0.05 N/m n 2 
x0 0.143 m η 190 s-1 

 

4. Assessment of LS-SVM hysteresis model for MR 

damper 

In this section, the capabilities of the LS-SVM hysteresis 

model is evaluated for MR damper hysteresis applied input 

voltage. MR damper hysteresis is categorized in the rate-

dependent group. In rate-dependent hysteresis, the output 

signal of the hysteretic system y(t) depends on the rate at 

which the input signal x(t) changes. For MR damper 

hysteresis, the shape is affected by �̇� (velocity). The new 

proposed version LS-SVM hysteresis model which is used 

in this section, is illustrated in Fig. 6. For this model, �̇� is 

input for Prandtl operator and x(t) and V(t)(voltage) are in 

input layer, while the output layer contains F(t) (MR damper 

force). For the first attempt, the x(t) was input for Prandtl 

operator but the result was not satisfactory and this model 

was chosen by trial and error. 
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Fig. 6: Architecture of LS-SVM hysteresis model for MR 

damper 

 

The input-output pairs were generated based on the data 

collected from the analysis of the one-story shear frame 

(m=10000N.s2/m, k=146800 N/m) equipped with MR 

damper. MATLAB software was used to model the shear 

frame equipped with Spencer’s numerical model (Spencer 

Jr, Dyke et al. 1997 [20]) for nonlinear dynamic analysis. 

The frame was subjected to 100% and 200% of white noise 

acceleration time history as illustrated in Fig. 7. White noise 

signal has been chosen to possess all the frequency content 

and covers the maximum of the velocity and displacement 

that MR damper will experience in the proposed structure 

for this study. Also the constant voltages shown in Fig. 8 

were used in training process. Then pair data from two 

excitations was utilized for training the LS-SVM for 

modeling hysteresis. 

 
Fig. 7: White noise excitation for training 

 

 

 
Fig. 8: Applied voltage, V=2 

 

Figs. 9,10 displays the comparison of plot of reference 

(Spencer’s numerical model) damper force versus velocity 

and the plot of hysteresis, with corresponding plot of the LS-

SVM model, in which the trained systems were tested by the 

same white noise and voltage used for training. For training 

the LS-SVM, due to the advantage of not having to define 

the network architecture and the number of neurons (which 

was taken as fifteen), the training procedures were 

performed only once. Due to the ability of LS-SVM model, 

these systems confront fewer problems with architecture and 

number of neurons. In other words, the number of neurons 

do not have a specific effect on the accuracy of training 

process. In Table 2 the Root Mean Square of Errors (RMSE) 

and relative error for the maximum force for LS-SVM in 

comparison with the reference model are illustrated. These 

are calculated based on the following equations:  
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in which, Xref, i, and Xmodel, i represent damper forces in step 

i, in the reference model and the considered system, 

respectively. n, is the number of total steps. According to 

Figs. 9, 10 and Table 2, the LS-SVM ability for hysteresis 

modeling is acceptable. 
 

 
Fig. 9: Comparison of Reference (Spencer’s model) and LS

-SVM response (200% white noise) 

 

 
Fig. 10: Comparison of Reference (Spencer’s model) and L

S-SVM response (200% white noise)  

 

Table 2. RMSEs and relative errors of maximum force for 

different method (passive on) under 200% white noise 
Response Max-Force (N) Err. (%) RMSE (N) 

Reference -1660.10 0 0 

LS-SVM -1661.85 0.105 12.14 
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5. Hybrid simulation for one-story frame equipped 

with MR damper 

In this section, the detailed example on how to use a trained 

LS-SVM instead of a physical substructure (MR damper) 

will be studied. To conduct hybrid simulation, a 2-

dimensional one-story steel frame which is illustrated in Fig. 

11 is modeled using the computer program Open System for 

Earthquake Engineering Simulation (OpenSees). The height 

of the story and the span length for this building are selected 

to be 3 m and 4.2 m, respectively. The total nodal mass is 

equal to 16880N.s2/m. A standard double IPE180 is used for 

the columns. Double 100*100*10 mm angles were used for 

the bracing system. An MR damper was incorporated into 

the structure using a chevron bracing system. 

 
Fig. 11: Typical frame equipped with MR damper 

 

The stress-strain behavior of steel was modeled with 

Hysteretic Material in OpenSees. Columns are modeled 

using nonlinear Beam-Column elements with fiber sections. 

Spread plasticity models are employed to model nonlinear 

behavior of column elements. The rigid beams are assumed 

to have the same displacement at the top nodes. 

There are several software frameworks such as UI-

SIMCOR, OPENFRESCO, MERCORY etc. For the 

purpose of hybrid simulation. Among them UI-SIMCOR is 

utilized for hybrid simulation in this study. The Multi-Site 

Substructure Pseudo-Dynamic Simulation Coordinator (UI-

SIMCOR) was developed at the University of Illinois at 

Urbana-Champaign. This package uses a variety of 

communication protocols to integrate its numerical 

simulation with other analysis software or laboratory test 

equipment in local or remote sites (Ahmadizadeh 2007 [1]). 

Also, UI-SIMCOR is an open source public domain and is 

written in Matlab. LS-SVM model is defined as a function 

in Matlab and for every step of analysis, the displacement 

and velocity from UI-SIMCOR are sent as an input of LS-

SVM model function. 

The steel frame equipped with MR damper is divided into 

two parts as indicated in Fig. 12. The MR damper is selected 

as the physical substructure which should be replaced by the 

LS-SVM model. The rest of the structure with mass is 

considered as the numerical substructure which is modeled 

in OpenSees (OP-LS). In a parallel analysis, the MR damper 

is modeled by Spencer’s (Spencer Jr, Dyke et al. 1997 [17]) 

model and the rest of the structure is modeled by Opensees 

(OP-SP) in Fig. 12 to provide a reference model to check the 

performance of trained LS-SVM model in proposed hybrid 

simulations. 

The frame equipped with MR damper with different 

voltage (V=1) that was considered for training process 

(V=2) is subjected to an excitation other than the white 

noise which is used for training LS-SVM. The 1940 El 

Centro, 200% and Northridge earthquake records are 

considered as the new excitations for both hybrid 

simulations. The three excitations are shown in Table 3. 

 
Table 3. Three Excitation records for hybrid simulations 

Excitation Year Earthquake name Station name PGA 

Excitation.1 1940 El Centro 100% USGS station 0117 3.41 m/s2 

Excitation.2 1994 Northridge 100% 090 CDMG station 24278 5.75 m/s2 

Excitation.3  1940 El Centro 200% USGS station 0117 6.82 m/s2 

 

 
Fig. 12: Comparison of Reference (Spencer’s model) (OP-

SP) and LS-SVM response (OP-LS) 
 

The results of the comparison of the reference and 

proposed hybrid simulation are illustrated in Fig. 13 to 18 

for three excitations. Table 4 contains the RMSEs and 

relative error of maximum force for variable excitations. 

By comparing the figures and the error values, the high 

ability of the performance of proposed hybrid simulation 

is determined.  

 
Fig. 13: Comparison of reference hybrid simulation (OP-S

P)and (OP-LS) response (Excitation.1) 
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Fig. 14: Comparison of reference hybrid simulation (OP-S

P)and (OP-LS) response (Excitation.1) 

 

 
Fig. 15: Comparison of reference hybrid simulation (OP-S

P)and (OP-LS) response (Excitation.2) 

 

 
Fig. 16: Comparison of reference hybrid simulation (OP-S

P)and (OP-LS) response (Excitation.2) 

 

 
Fig. 17: Comparison of reference hybrid simulation (OP-S

P)and (OP-LS) response (Excitation.3) 

 

 
Fig. 18: Comparison of reference hybrid simulation (OP-S

P)and (OP-LS) response (Excitation.3) 

 

Table 4. RMSEs and relative errors of maximum force under 

different excitations 

 Response Max-Force (N) Err. (%) RMSE (N) 

100% El Centro Reference -1183 0 0 

LS-SVM -1161.9 1.78 54.84 

Northridge Reference -1285.3 0 0 

LS-SVM -1295 .75 29.76 

200% El Centro Reference -1807.6 0 0 

LS-SVM -1736.41 3.93 56.26 

 

6. Conclusions 

In this paper, new hybrid simulation was introduced.  With 

regard to the proposed hybrid simulation, some physical 

substructures can be replaced by a suitably trained LS-SVM 

model. To execute this, after selecting the physical and 

numerical substructures and before performing the hybrid 

test, an appropriate test should be performed on the physical 

substructure to provide the inputs and outputs required for 

training the LS-SVM model. Consequently, the physical 

substructure can be replaced by the trained LS-SVM model 

even in the case that the structure is subjected to a different 

input excitation. Therefore, the trained LS-SVM model can 

play the role of substructure as a part of hybrid simulation 

without using the experimental setup. It was shown that LS-

SVM model has a great ability to learn the hysteresis 

behavior of physical substructures (rate-dependent) with the 

training data achieved from dynamic test. By this method, it 

is possible to perform hybrid simulation for unlimited times 

and the trained LS-SVM model can be utilized for many 

substructures in different positions in one structure. The 

accuracy of proposed hybrid simulation was evaluated for 

one-story frame equipped by MR damper under different 

excitations. Based on the results of the verification examples 

used for assessment of LS-SVM model, the great ability of 

LS-SVM model and the feasibility of proposed method for 

improving the hybrid simulation are proven. In this paper, 

feasibility of proposed hybrid simulation has been testified 

through some numerical examples. However, the essence of 

performing hybrid simulation by experimental examples has 

been put aside for future rigorous study. 
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