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Abstract: 

Substructuring in the finite element method is a technique that reduces computational cost and 

memory usage for analysis of complex structures. The efficiency of this technique depends on 

the number of substructures in different problems. Some subdivisions increase computational 

cost, but require little memory usage and vice versa. In the present study, the cost functions of 

computations and memory usage are extracted in terms of number of subdivisions and optimized 

mathematically. The results are presented in the form of tables which recommend the proper 

substructuring for different number of elements. A combined case is also considered which 

investigates balanced reduction of computational and memory cost for 2D problems. Several 

numerical examples are analyzed numerically to demonstrate the abilities and efficiency of the 

proposed computational algorithm for structured and unstructured mesh. 
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1. Introduction 

The accurate analysis and design of large and complex 

structures remains a challenging task for engineers. Major 

advances in fast computing technologies have encouraged 

engineers to consider more complex constitutive models in 

analysis of structures. The finite element method (FEM) is 

the most common method used and has played a key role in 

the development. 

Engineers are increasingly interested in accurate analysis 

and consideration of the nonlinear condition, large 

deformations, and cases where the approximation is 

reduced. Where large and highly-complex structures are 

involved, analysis can take hours and even days. Software 

producers continually endeavor to reduce analysis time of 

complex structures. One method of reducing the amount of 

computation is the technique of substructuring,  in which a 

large structure is subdivided into smaller parts that can be 

analyzed separately. Przemieniecki (1963)[17] first 

proposed this method for first-level  breakdown of complex  
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systems such as a complete airplane for the displacement 

and force method. The advent of supercomputers has further 

advanced substructuring technology.  

Computational and memory cost restrict the 

substructuring technique. The effect of varying the block 

size on a number of arithmetic operations and storage 

requirements was investigated by Noor et al. (1978)[14]. 

They compared multi-level substructuring with the direct 

method and found that, as the number of substructuring 

levels increased, the number of arithmetic operations and 

disk storage requirements decreased. Gurujee and 

Deshpande (1978)[7] improved substructure analysis 

method specifically for structures incurring substantial 

expense in one direction, such as multi-storied buildings and 

communication towers. This method reduced the number of 

arithmetic operations involved and memory space used. 

Fonseka(1993)[6] reported that the technique could use 

fixed-sized arrays in the computer program irrespective of 

the size of the substructure, thus allowing optimal use of 

computer memory to incorporate substructures into shells of 

revolution.  

Parallel processors opened a challenging area in 

substructuring to facilitate assignment of substructures to 
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different processors. Kaveh and Roosta (1995)[9] used 

graph theory to optimize decomposition and proposed a set 

of balanced subdomains to ensure that the overall 

computational load be as evenly distributed as possible 

between processors. Kaveh (2014)[8] minimized the number 

of interface nodes to reduce the cost of synchronization 

and/or message-passing between processors. Farhat et al. 

(1995)[4] proposed subdomains with aspect ratios to 

improve the convergence rate of domain decomposition 

based the iterative method and demonstrated that bad 

element aspect ratios result in poorly-conditioned operators. 

A simple and efficient algorithm for automatic domain 

decomposition was proposed by Farhat (1988)[3], who 

applied it to both regular and irregular two- and three-

dimensional finite element mesh. The algorithm was 

improved by introducing finite element tearing and 

interconnecting (FETI) requiring less interprocessor 

communication than does the classical method of 

substructuring and is suitable for parallel/vector computers 

with shared memory (Farhat and Roux 1991[5]).  

Vanderstraetena and Keunings (1995)[19] proposed 

optimized partitioning of unstructured mesh in a two-step 

approach that combines a direct partitioning scheme with a 

non-deterministic procedure of combinatorial optimization. 

In the first step, direct partitioning is used to produce initial 

decomposition of reasonable quality. In the second step, 

optimization is used to improve on the initial partition. A 

cost function is introduced that takes into account the 

interface size and computes the load imbalance between 

subdomains. Wang et al. (1999)[20] proposed a mixed 

formulation of the substructure synthesis method in terms of 

the physics-impedance-modal parameter. This formulation 

was based on the concept of the parameter-mixed synthesis. 

A multilevel structural method was implemented by Yang et 

al. (2011)[21] to reduce the time needed to solve the 

interface equation system and improve the overall efficiency 

of parallel substructure finite element analysis. The 

multilevel approach reduced up to 50% of the time needed 

for solution of the interface equation system and improved 

the overall efficiency of parallel substructuring up to 40% in 

numerical examples. 

Substructuring is now used in a variety of applications. Li 

and Hao (2013)[10] used substructuring to study progressive 

collapse and for blast loads a numerical approach with 

numerical condensation for an efficient simulation of 

structural response has been presented. This approach saves 

up to 54% of computational time, but the study did not 

investigate memory sparing in detail. Shen and Yin 

(2014)[18] proposed a dynamic substructure computational 

procedure for analysis of impact-induced stress waves in a 

non-uniform flexible structure and determined the sufficient 

number of substructures for this purpose. Njomo and Ozay 

(2014)[13] applied substructuring to sequential analysis 

modeled on construction. The proposed model produced 

more accurate results with minimal computer memory and 

reduced time spent via determining the optimal size of the 

substructure. Predari et al. (2016)[16] modeled additional 

constraints with fixed vertices by means of a direct k-way 

greedy graph growing partitioning that properly handles 

fixed vertices. A multilevel tabu search algorithm for 

balanced partitioning of unstructured grids proposed by 

Mehrdoost and Bahrainian (2016)[11]. Boo and Oh 

(2017)[2] introduced automated static condensation method, 

which was developed for the local analysis of large finite 

element models. A substructural tree diagram and 

substructural sets were established in such a way that the 

omitted substructures were sequentially condensed into the 

retained substructure to construct the reduced model. A 

layer-by-layer partitioning of finite element meshes for 

multicore architecture was presented by Novikov et al. 

(2017)[15] using a neighborhood criterion to partition the 

mesh into layers and combining them into blocks and 

assigning them into different parallel processors. Badia and 

Verdugo (2018)[1] investigated the use of domain 

decomposition preconditioners for unfitted finite element 

methods such as extended finite element method defining 

the coarse degrees of freedom in the definition of the 

preconditioner. 

Previous studies have been based on a specified number 

of substructures with the aim of dividing a structure to 

proper substructures. The number of substructures as the 

cost parameter, however, also plays a major role in reducing 

computation and time of analysis. In extreme cases where an 

entire structure is used as a substructure of which each 

element is taken as a substructure, this technique does not 

reduce computational cost. If the proper number of 

substructures is employed, the computational cost can be 

substantially reduced. The present paper optimized the 

number of substructures for computational cost and memory 

by counting FLOP and the need of the memory for data, 

respectively. The path of partitioning was structured and the 

size of the substructures was kept the same to the greatest 

possible extent. Finding the optimum partitioning path is not 

investigated in this paper, however, the optimum number of 

substructures is studied. Since the nonlinear and dynamic 

analysis of structures consists of iterative solution of linear 

governing equations, the proposed algorithm can be 

employed in nonlinear and dynamic problems. 

Section 2 presents classic substructuring theory.  Section 

3 calculates the computational cost of operations in 

substructuring with respect to the number of substructures 

and optimizes them mathematically. In Section 4, the 

required memory size is computed and optimized with 

respect to the number of substructures. Section 5 shows that 

these two optimizations can be combined, depending on the 

importance of computational cost and memory size for 
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different cases. Section 5 also illustrates the ability and 

efficiency of the proposed approach using several numerical 

examples. Section 6 presents the concluding remarks.  

 

2. Substructuring 

Przemieniecki (1963)[17] first proposed substructuring for 

the displacement and force methods. In this technique, the 

structure is divided into substructures with each substructure 

containing several elements. The degrees of freedom 

(DOFs) of a substructure are classified as:  

 Internal DOFs: not connected to the DOFs of any other 

substructure 

 Boundary DOFs: connected to at least one other 

substructure; these usually reside at the boundary 

nodes placed on the periphery of the substructure 

If the equilibrium equation is written in boundary DOFs, the 

objective will be to eliminate all DOFs associated with 

internal freedoms. This elimination process is called static 

condensation or, simply, condensation. The static 

condensation method assumes that those internal DOFs that 

can be condensed are arranged in the first i DOFs and the 

remaining boundary DOFs in the last b nodal coordinates. 

This arrangement allows the governing equation for a 

structure to be written using partitioned matrices as: 
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where subscripts i and b represent the internal and boundary 

DOFs, respectively. A simple multiplication of the 

partitioned system in Eq. (1) yields the following two matrix 

equations: 
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Solving Eq. (2) for  u
i and substituting it into Eq. (3) 

arrives at: 
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Eq. (5) may be written as: 
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in which: 
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and: 
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In Eqs. (7) and (8),
 

K 
 

,  F  are the condensed stiffness 

matrix and force vector, respectively. This technique 

produces a condensed stiffness matrix and a condensed force 

vector for each substructure which are associated only with 

the boundary DOFs. Assume that each substructure is 

equivalent to an element having stiffness matrix and nodal 

force,
 

K 
 

,  F  respectively. Classic FEM states that the 

condensed equations of substructures must be assembled to 

obtain the condensed governing equation of the whole 

structure for the total boundary DOFs as: 
 

   
tbt t

K u F   
 

(9) 

 

in which
t

K 
 

,  
t

F are the assembled K 
 

and F , 

respectively. Since Eq. (9) is the partitioned form of Eq. (1), 

the coefficient matrix would not be singular. 

This obtains the solution to the Eq. (9) boundary DOFs. 

By substituting boundary DOFs associated with each 

substructure into Eq. (4), the internal DOFs in each 

substructure are computed.  

 

3. Optimization of computational cost 

The main computational operations in substructuring 

include static condensation for each substructure, solving 

Eq. (9) for total boundary DOFs and substituting it into Eq. 

(4) to solve the internal DOFs of each substructure. The 

parameters considered are the variable of cost functions such 

as analysis time and the number of floating point operations. 

In computing, the floating-point operation per second 

(FLOPS) is a measure of computer performance and is 

useful for calculations that have heavy floating-point 

calculations. In general, as the FLOPS count of the 

algorithm increases, the analysis time increases accordingly. 

For simple operations such as addition, subtraction, 

multiplication, and division, FLOP count is considered to be 

a unit. FLOP count operations such as matrix multiplication 

and solving a system of linear equations should be calculated 

based on simple operations.  

The FLOP count of the matrix operations were calculated 

in the lightspeed MATLAB toolbox and are summarized in 

Table 1 for the size of matrices. The system of linear 

equations is assumed to be solved using LU decomposition 

algorithm. Table 1 can be applied for substructuring with the 

corresponding sizes of the matrices. Table 2 shows 

   
b

F K u   
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computation of the FLOP count for each stage of 

substructuring where y, x, and z represent the number of 

boundary degrees of freedom of the total substructures, and 

internal and boundary degrees of each substructure 

respectively.  

 

 

 

Table 2 shows the total computational cost to be the sum of 

the cost functions as follows: 

 computational cost for equilibrium equation of total 

boundary DOFs: 

3 21( ) 0.5 14.5 8f x x x x     (10) 
 

 computational cost for equilibrium equation in 

substructures:  

3 22( , ) (3 (2 0.5)

(14 19.5) 8)

f y z y z y

z y nsub

  

  

 
(11) 

 computational cost for multiplication of matrix in 

substructures:   

2 23( , ) (2 4 )f y z yz z yz y z nsub      (12) 

where nsub indicates the number of substructures. For 

structured meshes in 2D problems, the number of elements in 

each direction are assumed to be m and n. The number of 

substructures in each direction are denoted as na and nb. 

Parameters x, y, and z can be expressed simply in terms of na 

and nb. The complexity of the computational cost function 

means that optimization does not lead to an explicit solution, 

but can be solved numerically with a specified number of m 

and n. There are different numbers of divisions (m, n) for 

different problems and the optimal size of substructure (na, 

nb) for some cases are summarized in Tables 3 and 4. It can 

be seen from these tables that square subdivisions are suitable 

for minimization of computational cost.  

 
 
4. Optimization of memory cost 

The size of the memory required in FEM confines the analysis 

of structures with dense mesh. Substructuring reduces the 

amount of memory needed considerably, but the savings is 

dependent on the number of substructures. In substructuring, 

the majority of the memory is used to save two classes of 

matrices: the stiffness of each substructure ksub (
t

K 
 

in Eq. 

9) and the stiffness of the total boundary nodes kmain ( iiK  

in Eq. 4). The memory used for other matrices could be 

neglected. It is assumed that the entire analysis operations 

have been accomplished using the main memory (RAM) of 

the computer. In large FE models, the operating system may 

use the Hard Disk Drive (HDD) of the computer to simulate 

RAM and the initial assumption may be disregarded. As the 

number of divisions increase, the memory required for kmain 

increases whereas the memory for ksub decreases. If a 

moderate number of subdivisions is chosen, a substantial 

amount of memory will be needed for ksub and less memory 

Table 2. FLOP count for stages of substructuring 
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Table 1. FLOP count for matrix operations 
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for kmain. This demonstrates that there is optimal 

substructuring between these cases. When the matrix is saved 

directly in the memory, considering the symmetry of the 

stiffness matrix, the memory cost for ksub and kmain can be 

computed as: 

memory needed for ksub: 
2

2

y y
nsub


  

(13) 

 

memory needed for kmain: 

2

2

x x
 (14) 

 

where y  and x  are the number of internal DOFs in each 

substructure and the number of total boundary DOFs, 

respectively. Similar to computational cost, memory cost also 

can be optimized using substructures of the proper size. 

Tables 5 and 6 show the optimal subdivisions for different 

number of elements in the problem. 

 
5. Combinational memory and FLOPS cost 

optimization 

Sections 3 and 4 showed that the optimal subdivisions for 

FLOPS and memory cost are not necessarily equal. The 

importance of each of these two factors leads to the selection 

of a proper substructure. At times when the amount of 

memory is insufficient for analysis, memory optimization 

becomes more important. At such times when analysis is 

extremely time-consuming, the focus should be on FLOPS 

cost optimization.  

 These two optimizations can be combined by weighting 

each of them. FLOPS and memory cost are different types of 

cost and cannot be directly combined; they must be first 

normalized with respect to the optimal FLOPS and memory 

and then combined. The normalized FLOPS cost for 

substructuring is the ratio of FLOPS cost of substructuring to 

the optimal FLOPS cost of the problem (Section 3). 

Normalized memory cost is the ratio of the memory cost of 

the specified substructuring to the optimal memory cost 

(Section 4). These two dimensionless costs can be combined 

with a proper weighting factor.  

In this case, the normalized combined cost is: 

 (normalized memory cost) × r  

+ (normalized FLOPS cost) × (1-r) 
(15) 

Table 3. Optimal number of substructures versus number of elements for computational cost (up to 100 elements in each direction) 

  m     

n 
10 20 30 40 50 60 70 80 90 100 

10 3×3 2×5 2×6 2×7 2×8 2×9 2×10 2×10 2×11 2×11 

20 5×2 4×4 3×5 3×6 3×7 3×7 3×8 2×11 2×12 2×12 

30 6×2 5×3 4×5 4×5 4×6 3×8 3×8 3×9 3×9 3×10 

40 7×2 6×3 5×4 5×5 5×5 4×6 4×7 4×8 4×8 4×8 

50 8×2 7×3 6×4 5×5 5×5 5×6 5×6 4×8 4×8 4×9 

60 9×2 7×3 8×3 6×4 6×5 5×6 5×7 5×7 5×7 5×8 

70 10×2 8×3 8×3 7×4 6×5 7×5 6×6 6×6 5×8 5×8 

80 10×2 11×2 9×3 8×4 8×4 7×5 6×6 6×6 6×7 6×7 

90 11×2 12×2 9×3 8×4 8×4 7×5 8×5 7×6 6×7 6×7 

100 11×2 12×2 10×3 8×4 9×4 8×5 8×5 7×6 7×6 7×7 

 

 
Table 4. Optimal number of substructures versus number of elements for computational cost (>100 elements in each direction) 

 m        

   n 
100 200 300 400 500 600 700 800 900 1000 

100 7×7 6×11 5×15 5×17 4×23 4×25 4×27 4×29 4×31 4×32 

200 11×6 9×9 8×12 7×16 7×17 7×19 6×23 6×25 6×26 6×27 

300 15×5 12×8 11×11 10×13 9×16 9×17 8×20 8×22 8×23 8×24 

400 17×5 16×7 13×10 12×12 11×14 11×16 10×18 10×20 10×21 9×24 

500 23×4 17×7 16×9 14×11 13×13 13×15 12×17 12×18 11×20 11×22 

600 25×4 19×7 17×9 16×11 15×13 14×15 14×16 13×18 13×19 12×21 

100 27×4 23×6 20×8 18×10 17×12 16×14 15×16 15×17 14×18 14×19 

800 29×4 25×6 22×8 20×10 18×12 18×13 17×15 16×16 16×17 15×19 

900 31×4 26×6 23×8 21×10 20×11 19×13 18×14 17×16 17×17 17×18 

1000 32×4 27×6 24×8 24×9 22×11 21×12 19×14 19×15 18×17 18×18 
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where r is a weighting factor between 0 and 1 which reflects 

the importance of memory cost in the problem. For   r = 0.5, 

which has equal values for time and memory, the optimal 

subdivisions are shown in Tables 7 and 8. Since the cost 

functions are nonlinear functions, this linear combination will 

result in different substructuring in the combinational case.  

 
6. Numerical examples 

Several examples were analyzed numerically to illustrate the 

accuracy and efficiency of proposed optimization strategy 

with the substructuring technique described in Sections 3,4 

and 5. FEM was implemented using the standard 

isoparametric quadrilateral elements with four Gauss points. 

In all of the examples the elasticity modulus of the plate is       

E = 2.1×106 kg/cm2 and the Poisson ratio is ν = 0.2. The 

thickness of the plate is 1 cm and the plane stress condition is 

assumed. Substructuring optimization software (SOS) was 

developed to optimize the substructuring. The first two 

examples are 2D plates with structured mesh chosen to 

illustrate the superiority of the proposed technique over the 

classic substructuring with respect to computational and 

memory cost. The next example is an asymmetric plate with 

an unstructured mesh chosen to demonstrate the performance 

of the proposed technique for unstructured mesh. In all 

examples, optimization was carried out for computational and 

memory cost and combinational optimization was carried out 

as discussed in Section 5. The results of these optimizations 

will be compared with other subdivisions below. 

6.1 Cross-shaped concrete plate  

 

The first example is a cross-shaped concrete plate that is 

tensioned on four sides. Although one-fourth of the problem 

could be modeled based on symmetry, half of the problem is 

modeled to increase the complexity of the FE mesh. The plate 

is meshed by 40×20 structured 4-noded quadrilateral elements 

as shown in Fig. 1. 

Table 5. Optimal number of substructures versus number of elements for memory cost (up to 100 elements in each direction) 

    m 

 n 
10 20 30 40 50 60 70 80 90 100 

10 3×3  3×5 2×7 2×8 2×10 2×10 2×12 2×13 2×13 2×14 

20 5×3 4×4 4×5 3×7 3×8 3×9 3×10 3×10 3×11 3×12 

30 7×2 5×4 5×5 4×6 4×7 4×8 4×8 4×9 3×11 3×12 

40 8×2 7×3 6×4 5×5 5×6 5×7 5×7 4×9 4×10 4×10 

50 10×2 8×3 7×4 6×5 6×6 5×7 5×8 5×8 5×9 5×9 

60 10×2 9×3 8×4 7×5 7×5 6×6 6×7 6×8 6×8 5×9 

70 12×2 10×3 8×4 7×5 8×5 7×6 7×7 7×7 6×8 6×9 

80 13×2 10×3 9×4 9×4 8×5 8×6 7×7 7×7 7×8 7×8 

90 13×2 11×3 11×3 10×4 9×5 8×6 8×6 8×7 7×8 7×8 

100 14×2 12×3 12×3 10×4 9×5 9×5 9×6 8×7 8×7 8×8 

 
Table 6. Optimal number of substructures versus number of elements for memory cost (>100 elements in each direction) 

  m   

 n 
100 200 300 400 500 600 700 800 900 1000 

100 8×8 6×14 6×17 5×22 5×26 5×29 5×32 5×34 4×41 4×44 

200 12×7 11×11 10×14 9×18 8×22 8×24 8×27 7×31 7×33 7×35 

300 17×6 14×10 13×13 12×16 11×19 11×21 10×25 10×27 10×29 10×31 

400 22×5 18×9 16×12 15×15 14×18 13×20 13×22 12×25 12×27 12×29 

500 26×5 22×8 19×11 18×14 16×17 16×19 15×21 15×23 14×26 14×27 

600 29×5 24×8 21×11 20×13 19×16 18×18 17×20 17×22 16×25 16×26 

700 32×5 27×8 25×10 22×13 21×15 20×17 19×20 19×21 18×24 18×25 

800 34×5 31×7 27×10 25×12 23×15 22×17 21×19 21×21 20×23 20×24 

900 41×4 33×7 29×10 27×12 26×14 25×16 24×18 23×20 22×22 21×24 

1000 44×4 35×7 31×10 29×12 27×14 26×16 25×18 24×20 24×21 23×23 

 



51 

 

Tables 3 and 5 indicate that the optimal number of 

substructures for FLOPS and memory cost are 6×3 and 7×3, 

respectively, as shown in Fig. 2. The bold lines delineate the 

boundary of the substructures.  

Different numbers of substructures were examined using a 

computer in the same manner and the run times were 

compared with the optimal states summarized in Table 9. The 

results indicate that the number of estimated FLOPS is 

concordant with the run time with slight tolerance. In this 

mesh, the model can be partitioned using 800 different 

patterns (1×1,1×2,…,40×20). If these cases are arranged with 

respect to FLOPS and memory cost (best to worst) and the 

FLOPS and memory cost for each case is calculated, the 

decrease in FLOPS and memory cost are as shown in Fig. 3. 

The drop at the start of the diagrams corresponds to the worst 

case (1×1) which gains no benefit from substructuring. 

For a small number of elements, the optimal FLOPS cost is 

usually almost similar to the optimal memory cost, as 

demonstrated in Fig. 3. The more dense mesh led to different 

and distinctive results; thus, the problem was meshed again 

with 400×200 elements. Combinational optimizations were 

carried out for different values of r. The case of r = 0 

corresponds to FLOPS optimization and r = 1 corresponds to 

memory optimization. The optimal subdivisions for different  

 

 
Fig. 1: Cross-shaped plate: (a) geometry; and (b) meshing. 

Table 7. Optimal number of substructures versus number of elements for combinational cost (r=0.5)(up to 100 elements in each direction) 

m 

n 
10 20 30 40 50 60 70 80 90 100 

10 3×3 2×5 2×6 2×8 2×8 2×9 2×10 2×11 2×11 2×12 

20 5×2 4×4 3×5 3×6 3×7 3×7 3×8 2×11 2×12 2×13 

30 6×2 5×3 4×5 4×5 4×6 3×8 3×9 3×9 3×10 3×10 

40 8×2 6×3 5×4 5×5 5×5 4×7 4×7 4×8 4×8 4×9 

50 8×2 7×3 6×4 5×5 5×5 5×6 5×7 5×7 4×9 4×9 

60 9×2 7×3 6×4 7×4 6×5 6×6 5×7 5×7 5×8 5×8 

70 10×2 8×3 9×3 7×4 7×5 7×5 6×6 6×7 6×7 5×8 

80 11×2 11×2 9×3 8×4 7×5 7×5 7×6 6×7 6×7 6×8 

90 11×2 12×2 10×3 8×4 9×4 8×5 7×6 7×6 7×7 7×7 

100 12×2 13×2 10×3 9×4 8×5 8×5 8×6 8×6 7×7 7×7 

 

 
Table 8. Optimal number of substructures versus number of elements for combinational cost (r=0.5) (>100 elements in each direction) 

m 

n 
100 200 300 400 500 600 700 800 900 1000 

100 7×7 6×11 5×16 5×18 4×24 4×27 4×29 4×31 4×33 4×35 

200 11×6 9×10 8×13 8×15 7×19 7×21 7×22 6×27 6×28 6×30 

300 16×5 13×8 11×11 10×14 10×16 9×19 9×20 9×22 8×25 8×27 

400 18×5 15×8 14×10 12×13 12×15 11×17 11×19 10×22 10×23 10×24 

500 24×4 19×7 16×10 15×12 14×14 13×16 13×18 12×20 12×21 11×24 

600 27×4 21×7 19×9 17×11 16×13 15×15 14×17 14×19 14×20 13×22 

700 29×4 22×7 20×9 19×11 18×13 17×14 16×16 16×18 15×20 15×21 

80 31×4 27×6 22×9 20×11 20×12 19×14 18×16 17×17 17×18 16×20 

900 33×4 28×6 25×8 23×10 21×12 20×14 20×15 18×17 18×18 18×19 

1000 35×4 30×6 27×8 24×10 22×12 22×13 21×15 20×16 19×18 19×19 

 

(a) (b) 
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Fig. 2: Optimal substructuring of cross-shaped plate with respect to a) FLOPS cost; b) memory cost 

  

  
Fig. 3: Variation in memory and FLOPS cost for different subdivisions. 
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Table 9. Summary of FLOPS and memory cost for subdivisions of cross-shaped plate 

State Subdivisions 
FLOP 

(×109) 

Memory 

(×106) 

Normalized 

FLOP 

Normalized 

memory 

Run time 

(s) 

 Arbitrary 3×3 133.0 1.96 2.04 1.37 0.04088 

Optimum for FLOPS 6×3 65.4 1.44 1.00 1.01 0.02778 

Optimum for memory 7×3 69.4 1.43 1.06 1.00 0.02674 

 Arbitrary 6×6 157.0 1.78 2.40 1.25 0.05312 

 Arbitrary 

(without substructuring) 
40×20 3260 8.79 49.75 6.16 0.50988 

 

 
 

(a) (b) 

Table 10. Optimum substructuring in cross shaped plate for different values of r 

r Subdivisions FLOP×109 Memory×106 
Normalized 

FLOPS cost 

Normalized 

memory cost 

Normalized 

average cost 

1 18×9 2550.00 1420.00 1.24 1 1 

0.8 17×8 2200.00 1440.00 1.07 1.01 1.024 

0.5 15×8 2080.00 1480.00 1.01 1.04 1.024 

0.2 14×8 2060.00 1510.00 1 1.06 1.013 

0 14×8 2060.00 1510.00 1 1.06 1 
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Fig. 4: Contours of horizontal displacement, Sx Stress and estimated error.  

optimal subdivisions have resulted for different values of r 

(importance of memory or FLOPS). The contours of the 

displacement field, stress field and estimated error are shown 

in Fig. 4.  
 

6.2 Rectangular concrete plate with hole  

The next example is a rectangular concrete plate with a central 

circular hole that is tensioned from opposite sides. Although 

one-fourth of the problem could be modeled based on 

symmetry, half of the problem is modeled to make a balanced 

mesh in two directions, as shown in Fig. 5. The plate was 

meshed by 30×30 structured 4-noded quadrilateral elements. 

Tables 3 and 5 show the optimal number of substructures 

for FLOPS and memory cost are 4×5 and 5×5, respectively, 

as shown in Fig. 6. The optimal substructures obtained in the  

 

 

 

.Plate with a hole: (a) geometry; and (b) meshing :5 Fig. 

 

 
.(b) memory cost Optimal substructuring of rectangular plate for: (a) FLOPS cost; :6 Fig. 

(a) 

(b) 

(a) (b) 
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.Stress and estimated error xContours of horizontal displacement, S :7 Fig. 

first two examples illustrate that square substructures are more 

efficient than long rectangular subdivisions. Table 11 

compares substructuring to reduce FLOPS and memory cost 

for different subdivisions. It is evident that the greatest 

percentage of decrease occurred in the 4×5 subdivision for 

FLOPS cost and 5×5 subdivision for memory cost. For more 

dense mesh (300×300), the optimal subdivision was 11×11 

for FLOPS cost and 13×13 for memory cost. Because these 

two subdivisions are close to each other, combinational 

optimization does not change the optimal subdivision 

considerably (Table 12). The contours of the displacement 

field, stress field and estimated error are shown in Fig. 7.  
 

6.3 Asymmetric cracked concrete plate with a hole  

The capability of the proposed algorithm for structured mesh 

has been demonstrated in the previous examples, but this 

algorithm could also be generalized to unstructured mesh. If 

unstructured mesh is partitioned into semi-structured regions 

and the substructuring of each region is optimized, an 

approximate solution for optimized substructuring of the 

whole problem could be obtained. An asymmetric cracked 

concrete plate with a hole was selected to show the robustness 

of the proposed algorithm for unstructured mesh. The plate 

was tensioned from two sides and meshed by unstructured 

quadrilateral elements as shown in Fig. 8. 

The plate was partitioned into three regions with semi-

structured meshing as shown in Fig. 9. Regions 1 and 2 are 

10×20 mesh and region 3 is 20×20 mesh. If these regions are 

subdivided for FLOPS cost optimization according to Table 

3, different subdivisions result for each region (Table 13). The 

track of the subdivision in each region is shown in Fig. 10. 

 

 

  

.Asymmetric cracked plate with a hole: (a) geometry; (b) meshing :8 Fig. 

Table 11. Summary of flop and memory cost for different subdivisions in rectangular plate. 

State Subdivisions 
Flop 

(×109) 

Memory 

(×106) 
Normalized flop Normalized memory 

Run time 

(s) 

Arbitrary 3×2 402 3.11 4.43 1.80 0.08696 

Optimum for flop 4×5 91 1.73 1.00 1.01 0.03404 

Optimum for memory 5×5 103 1.72 1.13 1.00 0.03572 

Arbitrary 6×6 160 1.88 1.76 1.10 0.04028 

Arbitrary 

(without substructuring) 
30×30 4760 11.3 52.5 6.59 0.64672 

 
Table 12. Optimum substructuring in rectangular plate for different values of r 

r Subdivisions FLOP×109 Memory×106 Normalized FLOPS cost Normalized memory cost Normalized average cost 

1 13×13 3320.00 1700.00 1.23 1 1 

0.8 12×12 2900.00 1720.00 1.08 1.01 1.024 

0.5 11×11 2700.00 1790.00 1 1.05 1.027 

0.2 11×11 2700.00 1790.00 1 1.05 1.011 

0 11×11 2700.00 1790.00 1 1.05 1 

 

(a) (b) 
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.structured regions of asymmetric cracked plate with a hole-Semi :9 Fig. 

 

 

 

 

 

.Track of subdivisions in each region in asymmetric cracked plate :10 Fig. 

 

 
.Stress and estimated error yContours of vertical displacement, S :11 Fig. 
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7. Conclusions 

The present study proposed an optimization algorithm for 

substructuring in the FEM. The cost functions of computation 

and memory usage are extracted in terms of number of 

subdivisions and optimized mathematically. The results are 

presented in the form of tables which recommend the proper 

substructuring for different number of elements. It was shown 

that use of the proper number of substructures improved the 

efficiency of technique for both analysis time and memory 

required. It also demonstrated that square substructures 

behave more efficiently than irregular substructures. More 

advanced optimization for memory and analysis time were 

investigated according to their respective importance in 

different problems and on different computers. The FLOPS 

and memory costs were first normalized with respect to the 

optimal case and combined with a weighting factor reflecting 

the value of each factor. The technique was generalized for 

unstructured mesh by partitioning the mesh to semi-structured 

regions. The proposed optimization algorithm was validated 

by analysis of several numerical examples. It was shown that 

this optimization improved substructuring and reduced 

analysis time and memory required. 
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Table 13. Optimal subdivisions of asymmetric cracked plate by region  

Region Optimal division 

1 5×2 

2 5×2 

3 4×4 

 
Table 14. Summary of FLOPS and memory cost for subdivisions of asymmetric cracked plate  

State Subdivisions 
FLOP 

(×109) 

Memory 
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Normalized FLOP Normalized memory 

Run time 
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Optimum for memory 

(Approximately) 
10×4 71.8 1.45 1.07 1.00 0.02962 

Arbitrary 6×6 157.0 1.78 2.34 1.23 0.05833 

Arbitrary 

(without substructuring) 
40×20 3260 8.79 48.51 6.06 0.58224 
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