
45

 Numerical Methods in Civil Engineering

Reducing Computational and Memory Cost of Substructuring Technique

in Finite Element Models

Mohammad Hadi Kadkhodaee* and Hamid Moslemi**

ARTICLE INFO

Article history:

Received:

September 2017.

Revised:

January 2018.

Accepted:

February 2018.

Keywords:

Substructuring;

Finite element method;

Structural optimization;

Computational cost;

Memory cost.

Abstract:

Substructuring in the finite element method is a technique that reduces computational cost and

memory usage for analysis of complex structures. The efficiency of this technique depends on

the number of substructures in different problems. Some subdivisions increase computational

cost, but require little memory usage and vice versa. In the present study, the cost functions of

computations and memory usage are extracted in terms of number of subdivisions and optimized

mathematically. The results are presented in the form of tables which recommend the proper

substructuring for different number of elements. A combined case is also considered which

investigates balanced reduction of computational and memory cost for 2D problems. Several

numerical examples are analyzed numerically to demonstrate the abilities and efficiency of the

proposed computational algorithm for structured and unstructured mesh.

D

D

1. Introduction

The accurate analysis and design of large and complex

structures remains a challenging task for engineers. Major

advances in fast computing technologies have encouraged

engineers to consider more complex constitutive models in

analysis of structures. The finite element method (FEM) is

the most common method used and has played a key role in

the development.

Engineers are increasingly interested in accurate analysis

and consideration of the nonlinear condition, large

deformations, and cases where the approximation is

reduced. Where large and highly-complex structures are

involved, analysis can take hours and even days. Software

producers continually endeavor to reduce analysis time of

complex structures. One method of reducing the amount of

computation is the technique of substructuring, in which a

large structure is subdivided into smaller parts that can be

analyzed separately. Przemieniecki (1963)[17] first

proposed this method for first-level breakdown of complex

* MSc, Department of Civil Engineering, Shahed University, Tehran, Iran.

**Corresponding Author: Assistant Professor, Civil Engineering
Department, Faculty of Engineering, Shahed University, Tehran, Iran.

Email: h.moslemi@shahed.ac.ir

systems such as a complete airplane for the displacement

and force method. The advent of supercomputers has further

advanced substructuring technology.

Computational and memory cost restrict the

substructuring technique. The effect of varying the block

size on a number of arithmetic operations and storage

requirements was investigated by Noor et al. (1978)[14].

They compared multi-level substructuring with the direct

method and found that, as the number of substructuring

levels increased, the number of arithmetic operations and

disk storage requirements decreased. Gurujee and

Deshpande (1978)[7] improved substructure analysis

method specifically for structures incurring substantial

expense in one direction, such as multi-storied buildings and

communication towers. This method reduced the number of

arithmetic operations involved and memory space used.

Fonseka(1993)[6] reported that the technique could use

fixed-sized arrays in the computer program irrespective of

the size of the substructure, thus allowing optimal use of

computer memory to incorporate substructures into shells of

revolution.

Parallel processors opened a challenging area in

substructuring to facilitate assignment of substructures to

http://www.scopus.com/record/display.uri?eid=2-s2.0-80052373296&origin=resultslist&sort=cp-f&src=s&st1=computational+cost+memory&st2=&sid=4362C61AD50C06E2FB62651E99072EB4.FZg2ODcJC9ArCe8WOZPvA%3a50&sot=b&sdt=b&sl=32&s=TITLE%28computational+cost+memory%29&relpos=4&citeCnt=0&searchTerm=TITLE%28computational+cost+memory%29

Numerical Methods in Civil Engineering, Vol. 2, No. 3, March. 2018

different processors. Kaveh and Roosta (1995)[9] used

graph theory to optimize decomposition and proposed a set

of balanced subdomains to ensure that the overall

computational load be as evenly distributed as possible

between processors. Kaveh (2014)[8] minimized the number

of interface nodes to reduce the cost of synchronization

and/or message-passing between processors. Farhat et al.

(1995)[4] proposed subdomains with aspect ratios to

improve the convergence rate of domain decomposition

based the iterative method and demonstrated that bad

element aspect ratios result in poorly-conditioned operators.

A simple and efficient algorithm for automatic domain

decomposition was proposed by Farhat (1988)[3], who

applied it to both regular and irregular two- and three-

dimensional finite element mesh. The algorithm was

improved by introducing finite element tearing and

interconnecting (FETI) requiring less interprocessor

communication than does the classical method of

substructuring and is suitable for parallel/vector computers

with shared memory (Farhat and Roux 1991[5]).

Vanderstraetena and Keunings (1995)[19] proposed

optimized partitioning of unstructured mesh in a two-step

approach that combines a direct partitioning scheme with a

non-deterministic procedure of combinatorial optimization.

In the first step, direct partitioning is used to produce initial

decomposition of reasonable quality. In the second step,

optimization is used to improve on the initial partition. A

cost function is introduced that takes into account the

interface size and computes the load imbalance between

subdomains. Wang et al. (1999)[20] proposed a mixed

formulation of the substructure synthesis method in terms of

the physics-impedance-modal parameter. This formulation

was based on the concept of the parameter-mixed synthesis.

A multilevel structural method was implemented by Yang et

al. (2011)[21] to reduce the time needed to solve the

interface equation system and improve the overall efficiency

of parallel substructure finite element analysis. The

multilevel approach reduced up to 50% of the time needed

for solution of the interface equation system and improved

the overall efficiency of parallel substructuring up to 40% in

numerical examples.

Substructuring is now used in a variety of applications. Li

and Hao (2013)[10] used substructuring to study progressive

collapse and for blast loads a numerical approach with

numerical condensation for an efficient simulation of

structural response has been presented. This approach saves

up to 54% of computational time, but the study did not

investigate memory sparing in detail. Shen and Yin

(2014)[18] proposed a dynamic substructure computational

procedure for analysis of impact-induced stress waves in a

non-uniform flexible structure and determined the sufficient

number of substructures for this purpose. Njomo and Ozay

(2014)[13] applied substructuring to sequential analysis

modeled on construction. The proposed model produced

more accurate results with minimal computer memory and

reduced time spent via determining the optimal size of the

substructure. Predari et al. (2016)[16] modeled additional

constraints with fixed vertices by means of a direct k-way

greedy graph growing partitioning that properly handles

fixed vertices. A multilevel tabu search algorithm for

balanced partitioning of unstructured grids proposed by

Mehrdoost and Bahrainian (2016)[11]. Boo and Oh

(2017)[2] introduced automated static condensation method,

which was developed for the local analysis of large finite

element models. A substructural tree diagram and

substructural sets were established in such a way that the

omitted substructures were sequentially condensed into the

retained substructure to construct the reduced model. A

layer-by-layer partitioning of finite element meshes for

multicore architecture was presented by Novikov et al.

(2017)[15] using a neighborhood criterion to partition the

mesh into layers and combining them into blocks and

assigning them into different parallel processors. Badia and

Verdugo (2018)[1] investigated the use of domain

decomposition preconditioners for unfitted finite element

methods such as extended finite element method defining

the coarse degrees of freedom in the definition of the

preconditioner.

Previous studies have been based on a specified number

of substructures with the aim of dividing a structure to

proper substructures. The number of substructures as the

cost parameter, however, also plays a major role in reducing

computation and time of analysis. In extreme cases where an

entire structure is used as a substructure of which each

element is taken as a substructure, this technique does not

reduce computational cost. If the proper number of

substructures is employed, the computational cost can be

substantially reduced. The present paper optimized the

number of substructures for computational cost and memory

by counting FLOP and the need of the memory for data,

respectively. The path of partitioning was structured and the

size of the substructures was kept the same to the greatest

possible extent. Finding the optimum partitioning path is not

investigated in this paper, however, the optimum number of

substructures is studied. Since the nonlinear and dynamic

analysis of structures consists of iterative solution of linear

governing equations, the proposed algorithm can be

employed in nonlinear and dynamic problems.

Section 2 presents classic substructuring theory. Section

3 calculates the computational cost of operations in

substructuring with respect to the number of substructures

and optimizes them mathematically. In Section 4, the

required memory size is computed and optimized with

respect to the number of substructures. Section 5 shows that

these two optimizations can be combined, depending on the

importance of computational cost and memory size for

https://www.scopus.com/record/display.uri?eid=2-s2.0-84956579055&origin=resultslist&sort=plf-f&cite=2-s2.0-0028419680&src=s&imp=t&sid=67b095f66ceaaa2238f51ded94edca02&sot=cite&sdt=a&sl=0&relpos=18&citeCnt=1&searchTerm=
https://www.scopus.com/record/display.uri?eid=2-s2.0-84956579055&origin=resultslist&sort=plf-f&cite=2-s2.0-0028419680&src=s&imp=t&sid=67b095f66ceaaa2238f51ded94edca02&sot=cite&sdt=a&sl=0&relpos=18&citeCnt=1&searchTerm=

47

different cases. Section 5 also illustrates the ability and

efficiency of the proposed approach using several numerical

examples. Section 6 presents the concluding remarks.

2. Substructuring

Przemieniecki (1963)[17] first proposed substructuring for

the displacement and force methods. In this technique, the

structure is divided into substructures with each substructure

containing several elements. The degrees of freedom

(DOFs) of a substructure are classified as:

 Internal DOFs: not connected to the DOFs of any other

substructure

 Boundary DOFs: connected to at least one other

substructure; these usually reside at the boundary

nodes placed on the periphery of the substructure

If the equilibrium equation is written in boundary DOFs, the

objective will be to eliminate all DOFs associated with

internal freedoms. This elimination process is called static

condensation or, simply, condensation. The static

condensation method assumes that those internal DOFs that

can be condensed are arranged in the first i DOFs and the

remaining boundary DOFs in the last b nodal coordinates.

This arrangement allows the governing equation for a

structure to be written using partitioned matrices as:

 }}
[] [] {

[] [] {

{ }

{ }

i

b

ii ib i

bi bb b

K K u

K K u

F

F

 (1)

where subscripts i and b represent the internal and boundary

DOFs, respectively. A simple multiplication of the

partitioned system in Eq. (1) yields the following two matrix

equations:

 K u K u F
i b iii ib
 (2)

 K u K u F
bi bbi b b

 (3)

Solving Eq. (2) for u
i and substituting it into Eq. (3)

arrives at:

-1

u K F K u
ii ibi i b

(4)

1

1

b

F K K F
bi iib i

K K K K u
bb bi ii ib

(5)

Eq. (5) may be written as:

(6)

in which:

1

b ibi ii
F F K K F

(7)

and:

1

bb bi ii ib
K K K K K

(8)

In Eqs. (7) and (8),

K

, F are the condensed stiffness

matrix and force vector, respectively. This technique

produces a condensed stiffness matrix and a condensed force

vector for each substructure which are associated only with

the boundary DOFs. Assume that each substructure is

equivalent to an element having stiffness matrix and nodal

force,

K

, F respectively. Classic FEM states that the

condensed equations of substructures must be assembled to

obtain the condensed governing equation of the whole

structure for the total boundary DOFs as:

tbt t

K u F

(9)

in which
t

K

,
t

F are the assembled K

and F ,

respectively. Since Eq. (9) is the partitioned form of Eq. (1),

the coefficient matrix would not be singular.

This obtains the solution to the Eq. (9) boundary DOFs.

By substituting boundary DOFs associated with each

substructure into Eq. (4), the internal DOFs in each

substructure are computed.

3. Optimization of computational cost

The main computational operations in substructuring

include static condensation for each substructure, solving

Eq. (9) for total boundary DOFs and substituting it into Eq.

(4) to solve the internal DOFs of each substructure. The

parameters considered are the variable of cost functions such

as analysis time and the number of floating point operations.

In computing, the floating-point operation per second

(FLOPS) is a measure of computer performance and is

useful for calculations that have heavy floating-point

calculations. In general, as the FLOPS count of the

algorithm increases, the analysis time increases accordingly.

For simple operations such as addition, subtraction,

multiplication, and division, FLOP count is considered to be

a unit. FLOP count operations such as matrix multiplication

and solving a system of linear equations should be calculated

based on simple operations.

The FLOP count of the matrix operations were calculated

in the lightspeed MATLAB toolbox and are summarized in

Table 1 for the size of matrices. The system of linear

equations is assumed to be solved using LU decomposition

algorithm. Table 1 can be applied for substructuring with the

corresponding sizes of the matrices. Table 2 shows

b

F K u

Numerical Methods in Civil Engineering, Vol. 2, No. 3, March. 2018

computation of the FLOP count for each stage of

substructuring where y, x, and z represent the number of

boundary degrees of freedom of the total substructures, and

internal and boundary degrees of each substructure

respectively.

Table 2 shows the total computational cost to be the sum of

the cost functions as follows:

 computational cost for equilibrium equation of total

boundary DOFs:

3 21() 0.5 14.5 8f x x x x (10)

 computational cost for equilibrium equation in

substructures:

3 22(,) (3 (2 0.5)

(14 19.5) 8)

f y z y z y

z y nsub

(11)

 computational cost for multiplication of matrix in

substructures:

2 23(,) (2 4)f y z yz z yz y z nsub (12)

where nsub indicates the number of substructures. For

structured meshes in 2D problems, the number of elements in

each direction are assumed to be m and n. The number of

substructures in each direction are denoted as na and nb.

Parameters x, y, and z can be expressed simply in terms of na

and nb. The complexity of the computational cost function

means that optimization does not lead to an explicit solution,

but can be solved numerically with a specified number of m

and n. There are different numbers of divisions (m, n) for

different problems and the optimal size of substructure (na,

nb) for some cases are summarized in Tables 3 and 4. It can

be seen from these tables that square subdivisions are suitable

for minimization of computational cost.

4. Optimization of memory cost

The size of the memory required in FEM confines the analysis

of structures with dense mesh. Substructuring reduces the

amount of memory needed considerably, but the savings is

dependent on the number of substructures. In substructuring,

the majority of the memory is used to save two classes of

matrices: the stiffness of each substructure ksub (
t

K

in Eq.

9) and the stiffness of the total boundary nodes kmain (iiK

in Eq. 4). The memory used for other matrices could be

neglected. It is assumed that the entire analysis operations

have been accomplished using the main memory (RAM) of

the computer. In large FE models, the operating system may

use the Hard Disk Drive (HDD) of the computer to simulate

RAM and the initial assumption may be disregarded. As the

number of divisions increase, the memory required for kmain

increases whereas the memory for ksub decreases. If a

moderate number of subdivisions is chosen, a substantial

amount of memory will be needed for ksub and less memory

Table 2. FLOP count for stages of substructuring
Equation Operations FLOP

(7)

 \
() (1)(1) ii i

A K F
y y yy

 ()(1) (1)
B K A

bi z yz y

(2 1)f y z

(8)

 \
()

() ()
A K K

ii iby z
y y y z

3 2(2 1.5) (14 0.5) 8f y z y z y

 ()() ()
B K A

bi z yz z y z

2(2 1)f y z

(9)
(1) () (1)

\
tb t tx x x x

u K F

3 20.5 14.5 8f x x x

(4)

 (1) (1) (1)()y i y b zib y z
A F K u

(2 1)f z y

1

(1) (1)()y yii y y
B K A

3 20.5 14.5 8f y y y

3 20.5 14.5 8f y y y

Table 1. FLOP count for matrix operations
Count FLOP Matrix Operation

(2 1)f m nc
n m m ct a b

3 2(2 1.5) (14 0.5) 8f m n m n m \m m m nb a t

49

for kmain. This demonstrates that there is optimal

substructuring between these cases. When the matrix is saved

directly in the memory, considering the symmetry of the

stiffness matrix, the memory cost for ksub and kmain can be

computed as:

memory needed for ksub:
2

2

y y
nsub

(13)

memory needed for kmain:

2

2

x x
 (14)

where y and x are the number of internal DOFs in each

substructure and the number of total boundary DOFs,

respectively. Similar to computational cost, memory cost also

can be optimized using substructures of the proper size.

Tables 5 and 6 show the optimal subdivisions for different

number of elements in the problem.

5. Combinational memory and FLOPS cost

optimization

Sections 3 and 4 showed that the optimal subdivisions for

FLOPS and memory cost are not necessarily equal. The

importance of each of these two factors leads to the selection

of a proper substructure. At times when the amount of

memory is insufficient for analysis, memory optimization

becomes more important. At such times when analysis is

extremely time-consuming, the focus should be on FLOPS

cost optimization.

 These two optimizations can be combined by weighting

each of them. FLOPS and memory cost are different types of

cost and cannot be directly combined; they must be first

normalized with respect to the optimal FLOPS and memory

and then combined. The normalized FLOPS cost for

substructuring is the ratio of FLOPS cost of substructuring to

the optimal FLOPS cost of the problem (Section 3).

Normalized memory cost is the ratio of the memory cost of

the specified substructuring to the optimal memory cost

(Section 4). These two dimensionless costs can be combined

with a proper weighting factor.

In this case, the normalized combined cost is:

 (normalized memory cost) × r

+ (normalized FLOPS cost) × (1-r)
(15)

Table 3. Optimal number of substructures versus number of elements for computational cost (up to 100 elements in each direction)

 m

n
10 20 30 40 50 60 70 80 90 100

10 3×3 2×5 2×6 2×7 2×8 2×9 2×10 2×10 2×11 2×11

20 5×2 4×4 3×5 3×6 3×7 3×7 3×8 2×11 2×12 2×12

30 6×2 5×3 4×5 4×5 4×6 3×8 3×8 3×9 3×9 3×10

40 7×2 6×3 5×4 5×5 5×5 4×6 4×7 4×8 4×8 4×8

50 8×2 7×3 6×4 5×5 5×5 5×6 5×6 4×8 4×8 4×9

60 9×2 7×3 8×3 6×4 6×5 5×6 5×7 5×7 5×7 5×8

70 10×2 8×3 8×3 7×4 6×5 7×5 6×6 6×6 5×8 5×8

80 10×2 11×2 9×3 8×4 8×4 7×5 6×6 6×6 6×7 6×7

90 11×2 12×2 9×3 8×4 8×4 7×5 8×5 7×6 6×7 6×7

100 11×2 12×2 10×3 8×4 9×4 8×5 8×5 7×6 7×6 7×7

Table 4. Optimal number of substructures versus number of elements for computational cost (>100 elements in each direction)

 m

 n
100 200 300 400 500 600 700 800 900 1000

100 7×7 6×11 5×15 5×17 4×23 4×25 4×27 4×29 4×31 4×32

200 11×6 9×9 8×12 7×16 7×17 7×19 6×23 6×25 6×26 6×27

300 15×5 12×8 11×11 10×13 9×16 9×17 8×20 8×22 8×23 8×24

400 17×5 16×7 13×10 12×12 11×14 11×16 10×18 10×20 10×21 9×24

500 23×4 17×7 16×9 14×11 13×13 13×15 12×17 12×18 11×20 11×22

600 25×4 19×7 17×9 16×11 15×13 14×15 14×16 13×18 13×19 12×21

100 27×4 23×6 20×8 18×10 17×12 16×14 15×16 15×17 14×18 14×19

800 29×4 25×6 22×8 20×10 18×12 18×13 17×15 16×16 16×17 15×19

900 31×4 26×6 23×8 21×10 20×11 19×13 18×14 17×16 17×17 17×18

1000 32×4 27×6 24×8 24×9 22×11 21×12 19×14 19×15 18×17 18×18

Numerical Methods in Civil Engineering, Vol. 2, No. 3, March. 2018

where r is a weighting factor between 0 and 1 which reflects

the importance of memory cost in the problem. For r = 0.5,

which has equal values for time and memory, the optimal

subdivisions are shown in Tables 7 and 8. Since the cost

functions are nonlinear functions, this linear combination will

result in different substructuring in the combinational case.

6. Numerical examples

Several examples were analyzed numerically to illustrate the

accuracy and efficiency of proposed optimization strategy

with the substructuring technique described in Sections 3,4

and 5. FEM was implemented using the standard

isoparametric quadrilateral elements with four Gauss points.

In all of the examples the elasticity modulus of the plate is

E = 2.1×106 kg/cm2 and the Poisson ratio is ν = 0.2. The

thickness of the plate is 1 cm and the plane stress condition is

assumed. Substructuring optimization software (SOS) was

developed to optimize the substructuring. The first two

examples are 2D plates with structured mesh chosen to

illustrate the superiority of the proposed technique over the

classic substructuring with respect to computational and

memory cost. The next example is an asymmetric plate with

an unstructured mesh chosen to demonstrate the performance

of the proposed technique for unstructured mesh. In all

examples, optimization was carried out for computational and

memory cost and combinational optimization was carried out

as discussed in Section 5. The results of these optimizations

will be compared with other subdivisions below.

6.1 Cross-shaped concrete plate

The first example is a cross-shaped concrete plate that is

tensioned on four sides. Although one-fourth of the problem

could be modeled based on symmetry, half of the problem is

modeled to increase the complexity of the FE mesh. The plate

is meshed by 40×20 structured 4-noded quadrilateral elements

as shown in Fig. 1.

Table 5. Optimal number of substructures versus number of elements for memory cost (up to 100 elements in each direction)

 m

 n
10 20 30 40 50 60 70 80 90 100

10 3×3 3×5 2×7 2×8 2×10 2×10 2×12 2×13 2×13 2×14

20 5×3 4×4 4×5 3×7 3×8 3×9 3×10 3×10 3×11 3×12

30 7×2 5×4 5×5 4×6 4×7 4×8 4×8 4×9 3×11 3×12

40 8×2 7×3 6×4 5×5 5×6 5×7 5×7 4×9 4×10 4×10

50 10×2 8×3 7×4 6×5 6×6 5×7 5×8 5×8 5×9 5×9

60 10×2 9×3 8×4 7×5 7×5 6×6 6×7 6×8 6×8 5×9

70 12×2 10×3 8×4 7×5 8×5 7×6 7×7 7×7 6×8 6×9

80 13×2 10×3 9×4 9×4 8×5 8×6 7×7 7×7 7×8 7×8

90 13×2 11×3 11×3 10×4 9×5 8×6 8×6 8×7 7×8 7×8

100 14×2 12×3 12×3 10×4 9×5 9×5 9×6 8×7 8×7 8×8

Table 6. Optimal number of substructures versus number of elements for memory cost (>100 elements in each direction)

 m

 n
100 200 300 400 500 600 700 800 900 1000

100 8×8 6×14 6×17 5×22 5×26 5×29 5×32 5×34 4×41 4×44

200 12×7 11×11 10×14 9×18 8×22 8×24 8×27 7×31 7×33 7×35

300 17×6 14×10 13×13 12×16 11×19 11×21 10×25 10×27 10×29 10×31

400 22×5 18×9 16×12 15×15 14×18 13×20 13×22 12×25 12×27 12×29

500 26×5 22×8 19×11 18×14 16×17 16×19 15×21 15×23 14×26 14×27

600 29×5 24×8 21×11 20×13 19×16 18×18 17×20 17×22 16×25 16×26

700 32×5 27×8 25×10 22×13 21×15 20×17 19×20 19×21 18×24 18×25

800 34×5 31×7 27×10 25×12 23×15 22×17 21×19 21×21 20×23 20×24

900 41×4 33×7 29×10 27×12 26×14 25×16 24×18 23×20 22×22 21×24

1000 44×4 35×7 31×10 29×12 27×14 26×16 25×18 24×20 24×21 23×23

51

Tables 3 and 5 indicate that the optimal number of

substructures for FLOPS and memory cost are 6×3 and 7×3,

respectively, as shown in Fig. 2. The bold lines delineate the

boundary of the substructures.

Different numbers of substructures were examined using a

computer in the same manner and the run times were

compared with the optimal states summarized in Table 9. The

results indicate that the number of estimated FLOPS is

concordant with the run time with slight tolerance. In this

mesh, the model can be partitioned using 800 different

patterns (1×1,1×2,…,40×20). If these cases are arranged with

respect to FLOPS and memory cost (best to worst) and the

FLOPS and memory cost for each case is calculated, the

decrease in FLOPS and memory cost are as shown in Fig. 3.

The drop at the start of the diagrams corresponds to the worst

case (1×1) which gains no benefit from substructuring.

For a small number of elements, the optimal FLOPS cost is

usually almost similar to the optimal memory cost, as

demonstrated in Fig. 3. The more dense mesh led to different

and distinctive results; thus, the problem was meshed again

with 400×200 elements. Combinational optimizations were

carried out for different values of r. The case of r = 0

corresponds to FLOPS optimization and r = 1 corresponds to

memory optimization. The optimal subdivisions for different

Fig. 1: Cross-shaped plate: (a) geometry; and (b) meshing.

Table 7. Optimal number of substructures versus number of elements for combinational cost (r=0.5)(up to 100 elements in each direction)

m

n
10 20 30 40 50 60 70 80 90 100

10 3×3 2×5 2×6 2×8 2×8 2×9 2×10 2×11 2×11 2×12

20 5×2 4×4 3×5 3×6 3×7 3×7 3×8 2×11 2×12 2×13

30 6×2 5×3 4×5 4×5 4×6 3×8 3×9 3×9 3×10 3×10

40 8×2 6×3 5×4 5×5 5×5 4×7 4×7 4×8 4×8 4×9

50 8×2 7×3 6×4 5×5 5×5 5×6 5×7 5×7 4×9 4×9

60 9×2 7×3 6×4 7×4 6×5 6×6 5×7 5×7 5×8 5×8

70 10×2 8×3 9×3 7×4 7×5 7×5 6×6 6×7 6×7 5×8

80 11×2 11×2 9×3 8×4 7×5 7×5 7×6 6×7 6×7 6×8

90 11×2 12×2 10×3 8×4 9×4 8×5 7×6 7×6 7×7 7×7

100 12×2 13×2 10×3 9×4 8×5 8×5 8×6 8×6 7×7 7×7

Table 8. Optimal number of substructures versus number of elements for combinational cost (r=0.5) (>100 elements in each direction)

m

n
100 200 300 400 500 600 700 800 900 1000

100 7×7 6×11 5×16 5×18 4×24 4×27 4×29 4×31 4×33 4×35

200 11×6 9×10 8×13 8×15 7×19 7×21 7×22 6×27 6×28 6×30

300 16×5 13×8 11×11 10×14 10×16 9×19 9×20 9×22 8×25 8×27

400 18×5 15×8 14×10 12×13 12×15 11×17 11×19 10×22 10×23 10×24

500 24×4 19×7 16×10 15×12 14×14 13×16 13×18 12×20 12×21 11×24

600 27×4 21×7 19×9 17×11 16×13 15×15 14×17 14×19 14×20 13×22

700 29×4 22×7 20×9 19×11 18×13 17×14 16×16 16×18 15×20 15×21

80 31×4 27×6 22×9 20×11 20×12 19×14 18×16 17×17 17×18 16×20

900 33×4 28×6 25×8 23×10 21×12 20×14 20×15 18×17 18×18 18×19

1000 35×4 30×6 27×8 24×10 22×12 22×13 21×15 20×16 19×18 19×19

(a) (b)

Numerical Methods in Civil Engineering, Vol. 2, No. 3, March. 2018

Fig. 2: Optimal substructuring of cross-shaped plate with respect to a) FLOPS cost; b) memory cost

Fig. 3: Variation in memory and FLOPS cost for different subdivisions.

0.00E+00

2.00E+09

4.00E+09

6.00E+09

8.00E+09

1.00E+10

1.20E+10

0 500 1000

FL
O

P
S

C
o

st

Subdivision

0.00E+00

2.00E+06

4.00E+06

6.00E+06

8.00E+06

1.00E+07

1.20E+07

1.40E+07

0 500 1000

M
e

m
o

ry
 C

o
st

Subdivision

(a) (b)

Table 9. Summary of FLOPS and memory cost for subdivisions of cross-shaped plate

State Subdivisions
FLOP

(×109)

Memory

(×106)

Normalized

FLOP

Normalized

memory

Run time

(s)

 Arbitrary 3×3 133.0 1.96 2.04 1.37 0.04088

Optimum for FLOPS 6×3 65.4 1.44 1.00 1.01 0.02778

Optimum for memory 7×3 69.4 1.43 1.06 1.00 0.02674

 Arbitrary 6×6 157.0 1.78 2.40 1.25 0.05312

 Arbitrary

(without substructuring)
40×20 3260 8.79 49.75 6.16 0.50988

(a) (b)

Table 10. Optimum substructuring in cross shaped plate for different values of r

r Subdivisions FLOP×109 Memory×106
Normalized

FLOPS cost

Normalized

memory cost

Normalized

average cost

1 18×9 2550.00 1420.00 1.24 1 1

0.8 17×8 2200.00 1440.00 1.07 1.01 1.024

0.5 15×8 2080.00 1480.00 1.01 1.04 1.024

0.2 14×8 2060.00 1510.00 1 1.06 1.013

0 14×8 2060.00 1510.00 1 1.06 1

53

Fig. 4: Contours of horizontal displacement, Sx Stress and estimated error.

optimal subdivisions have resulted for different values of r

(importance of memory or FLOPS). The contours of the

displacement field, stress field and estimated error are shown

in Fig. 4.

6.2 Rectangular concrete plate with hole

The next example is a rectangular concrete plate with a central

circular hole that is tensioned from opposite sides. Although

one-fourth of the problem could be modeled based on

symmetry, half of the problem is modeled to make a balanced

mesh in two directions, as shown in Fig. 5. The plate was

meshed by 30×30 structured 4-noded quadrilateral elements.

Tables 3 and 5 show the optimal number of substructures

for FLOPS and memory cost are 4×5 and 5×5, respectively,

as shown in Fig. 6. The optimal substructures obtained in the

.Plate with a hole: (a) geometry; and (b) meshing :5 Fig.

.(b) memory cost Optimal substructuring of rectangular plate for: (a) FLOPS cost; :6 Fig.

(a)

(b)

(a) (b)

Numerical Methods in Civil Engineering, Vol. 2, No. 3, March. 2018

.Stress and estimated error xContours of horizontal displacement, S :7 Fig.

first two examples illustrate that square substructures are more

efficient than long rectangular subdivisions. Table 11

compares substructuring to reduce FLOPS and memory cost

for different subdivisions. It is evident that the greatest

percentage of decrease occurred in the 4×5 subdivision for

FLOPS cost and 5×5 subdivision for memory cost. For more

dense mesh (300×300), the optimal subdivision was 11×11

for FLOPS cost and 13×13 for memory cost. Because these

two subdivisions are close to each other, combinational

optimization does not change the optimal subdivision

considerably (Table 12). The contours of the displacement

field, stress field and estimated error are shown in Fig. 7.

6.3 Asymmetric cracked concrete plate with a hole

The capability of the proposed algorithm for structured mesh

has been demonstrated in the previous examples, but this

algorithm could also be generalized to unstructured mesh. If

unstructured mesh is partitioned into semi-structured regions

and the substructuring of each region is optimized, an

approximate solution for optimized substructuring of the

whole problem could be obtained. An asymmetric cracked

concrete plate with a hole was selected to show the robustness

of the proposed algorithm for unstructured mesh. The plate

was tensioned from two sides and meshed by unstructured

quadrilateral elements as shown in Fig. 8.

The plate was partitioned into three regions with semi-

structured meshing as shown in Fig. 9. Regions 1 and 2 are

10×20 mesh and region 3 is 20×20 mesh. If these regions are

subdivided for FLOPS cost optimization according to Table

3, different subdivisions result for each region (Table 13). The

track of the subdivision in each region is shown in Fig. 10.

.Asymmetric cracked plate with a hole: (a) geometry; (b) meshing :8 Fig.

Table 11. Summary of flop and memory cost for different subdivisions in rectangular plate.

State Subdivisions
Flop

(×109)

Memory

(×106)
Normalized flop Normalized memory

Run time

(s)

Arbitrary 3×2 402 3.11 4.43 1.80 0.08696

Optimum for flop 4×5 91 1.73 1.00 1.01 0.03404

Optimum for memory 5×5 103 1.72 1.13 1.00 0.03572

Arbitrary 6×6 160 1.88 1.76 1.10 0.04028

Arbitrary

(without substructuring)
30×30 4760 11.3 52.5 6.59 0.64672

Table 12. Optimum substructuring in rectangular plate for different values of r

r Subdivisions FLOP×109 Memory×106 Normalized FLOPS cost Normalized memory cost Normalized average cost

1 13×13 3320.00 1700.00 1.23 1 1

0.8 12×12 2900.00 1720.00 1.08 1.01 1.024

0.5 11×11 2700.00 1790.00 1 1.05 1.027

0.2 11×11 2700.00 1790.00 1 1.05 1.011

0 11×11 2700.00 1790.00 1 1.05 1

(a) (b)

55

.structured regions of asymmetric cracked plate with a hole-Semi :9 Fig.

.Track of subdivisions in each region in asymmetric cracked plate :10 Fig.

.Stress and estimated error yContours of vertical displacement, S :11 Fig.

Numerical Methods in Civil Engineering, Vol. 2, No. 3, March. 2018

7. Conclusions

The present study proposed an optimization algorithm for

substructuring in the FEM. The cost functions of computation

and memory usage are extracted in terms of number of

subdivisions and optimized mathematically. The results are

presented in the form of tables which recommend the proper

substructuring for different number of elements. It was shown

that use of the proper number of substructures improved the

efficiency of technique for both analysis time and memory

required. It also demonstrated that square substructures

behave more efficiently than irregular substructures. More

advanced optimization for memory and analysis time were

investigated according to their respective importance in

different problems and on different computers. The FLOPS

and memory costs were first normalized with respect to the

optimal case and combined with a weighting factor reflecting

the value of each factor. The technique was generalized for

unstructured mesh by partitioning the mesh to semi-structured

regions. The proposed optimization algorithm was validated

by analysis of several numerical examples. It was shown that

this optimization improved substructuring and reduced

analysis time and memory required.

References

[1] Badia, S., Verdugo, F., “Robust and scalable domain

decomposition solvers for unfitted finite element methods”,

Journal of Computational and Applied Mathematics, vol 344,

2018, p. 740-759.

[2] Boo, S.H., Oh M.H., “Automated static condensation method

for local analysis of large finite element models”, Structural

Engineering and Mechanics, vol 61, 2017, p. 481-495.

[3] Farhat, C., “A simple and efficient automatic FEM domain

decomposer”, Comp. and Struc, vol 28, 1988, p. 579-602.

[4] Farhat, C., Maman, N., Brown, G.W., “Mesh partitioning for

implicit computations via iterative domain decomposition: impact

and optimization of the subdomain aspect ratio”, Int. J. Num. Meth.

Eng., vol 38, 1995, p. 989-1000.

[5] Farhat, C., Roux, F.X., “A method of finite element tearing and

interconnecting and its parallel solution algorithm”, Int. J. Num.

Meth. Eng., vol 32, 1991, p. 1205-1227.

[6] Fonseka, M.C.M., “A sub-structure condensation technique in

finite element analysis for the optimal use of computer

memory”, Comp. and Struc., vol 49, 1993, p. 537-543.

[7] Gurujee, C.S., Deshpande, V.L., “An improved method of

substructure analysis”, Comp. and Struc., vol 8, 1978, p. 147-152.

[8] Kaveh, A., “Decomposition for Parallel Computing: Graph

Theory Methods”, Computational Structural Analysis and Finite

Element Methods, Springer Int. Pub, 2014.

[9] Kaveh, A., Roosta, G.R., “Graph-theoretical methods for

substructuring, subdomaining and ordering”, Int. J. Space Struc.,

vol 10, 1995, p. 121-132.

[10] Li, J., Hao, H., “Numerical study of structural progressive

collapse using substructure technique”, Eng. Struc., vol 52, 2013,

p. 101-113.

[11] Mehrdoost, Z., Bahrainian, S.S., “A multilevel tabu search

algorithm for balanced partitioning of unstructured grids”,

International Journal for Numerical Methods in Engineering, vol

105, 2016, p. 678-692.

[12] Minka, T. The Lightspeed MATLAB Toolbox, [online]

Available: https://github.com/tminka/lightspeed.

[13] Njomo, W., Ozay, G., “Sequential analysis coupled with

optimized substructure technique modeled on 3D-frame

construction process”, Eng. Struc., vol 80, 2014, p. 200-210.

[14] Noor, A.K., Kamel, H.A., Fulton, R.E., “Substructuring

techniques: status and projections”, Comp. and Struc., vol 8, 1978,

p. 621-632.

[15] Novikov, A., Piminova, N., Kopysov, S., Sagdeeva, Y.,

“Layer-by-layer partitioning of finite element meshes for multicore

architectures”, Communications in Computer and Information

Science, vol 687, 2016, p. 106-117.

[16] Predari, M., Esnard, A., Roman, J., “Comparison of initial

partitioning methods for multilevel direct k-way graph partitioning

with fixed vertices”, Parallel Computing, vol 66, 2017, p. 22-39.

[17] Przemieniecki, J.S., “Matrix Structural Analysis of

Substructures”, AIAA Journal, vol 1, 1963, p. 138-147.

[18] Shen, Y., Yin, X.C., “Dynamic substructure analysis of stress

waves generated by impacts on non-uniform rod structures”,

Mechanism and Machine Theory, vol 74, 2014, p. 154-172.

[19] Vanderstraeten, D., Keunings, R., “Optimized partitioning of

unstructured finite element meshes”, Int. J. Num. Meth. Eng.,

vol 38, 1995, p. 433-450.

Table 13. Optimal subdivisions of asymmetric cracked plate by region

Region Optimal division

1 5×2

2 5×2

3 4×4

Table 14. Summary of FLOPS and memory cost for subdivisions of asymmetric cracked plate

State Subdivisions
FLOP

(×109)

Memory

(×106)
Normalized FLOP Normalized memory

Run time

(s)

Arbitrary 3×3 133.0 1.96 1.98 1.35 0.04239

Optimum for FLOPS

(Approximately)
8×4 67.2 1.47 1.00 1.02 0.02738

Optimum for memory

(Approximately)
10×4 71.8 1.45 1.07 1.00 0.02962

Arbitrary 6×6 157.0 1.78 2.34 1.23 0.05833

Arbitrary

(without substructuring)
40×20 3260 8.79 48.51 6.06 0.58224

https://www.scopus.com/authid/detail.uri?origin=resultslist&authorId=22133620500&zone=
https://www.scopus.com/authid/detail.uri?origin=resultslist&authorId=55353932700&zone=
https://www.scopus.com/record/display.uri?eid=2-s2.0-85031412491&origin=resultslist&sort=plf-f&src=s&st1=badia&st2=preconditioner&sid=45ef8d3c999bfbebca0fe62db2d2054b&sot=b&sdt=b&sl=54&s=%28AUTHOR-NAME%28badia%29+AND+TITLE-ABS-KEY%28preconditioner%29%29&relpos=1&citeCnt=1&searchTerm=
https://www.scopus.com/record/display.uri?eid=2-s2.0-85031412491&origin=resultslist&sort=plf-f&src=s&st1=badia&st2=preconditioner&sid=45ef8d3c999bfbebca0fe62db2d2054b&sot=b&sdt=b&sl=54&s=%28AUTHOR-NAME%28badia%29+AND+TITLE-ABS-KEY%28preconditioner%29%29&relpos=1&citeCnt=1&searchTerm=
https://www.scopus.com/sourceid/23847?origin=resultslist
https://www.scopus.com/record/display.uri?eid=2-s2.0-85017296524&origin=resultslist&sort=plf-f&src=s&st1=condensation+finite+element&st2=computers+and+concrete&searchTerms=techno-press%3f%21%22*%24&sid=d85995638ee72bba3287fb75fd1cdec1&sot=b&sdt=b&sl=63&s=TITLE-ABS-KEY%28condensation+finite+element%29AND+ALL%28techno-press%29&relpos=1&citeCnt=1&searchTerm=
https://www.scopus.com/record/display.uri?eid=2-s2.0-85017296524&origin=resultslist&sort=plf-f&src=s&st1=condensation+finite+element&st2=computers+and+concrete&searchTerms=techno-press%3f%21%22*%24&sid=d85995638ee72bba3287fb75fd1cdec1&sot=b&sdt=b&sl=63&s=TITLE-ABS-KEY%28condensation+finite+element%29AND+ALL%28techno-press%29&relpos=1&citeCnt=1&searchTerm=
https://www.scopus.com/authid/detail.uri?origin=resultslist&authorId=37661791000&zone=
https://www.scopus.com/authid/detail.uri?origin=resultslist&authorId=34879443700&zone=
https://www.scopus.com/record/display.uri?eid=2-s2.0-84956579055&origin=resultslist&sort=plf-f&src=s&st1=mehrdoost&st2=bahrainian&sid=3a7a2d09d9b7b88fe5d6b1a17235b649&sot=b&sdt=b&sl=50&s=%28FIRSTAUTH%28mehrdoost%29+AND+AUTHOR-NAME%28bahrainian%29%29&relpos=0&citeCnt=1&searchTerm=
https://www.scopus.com/record/display.uri?eid=2-s2.0-84956579055&origin=resultslist&sort=plf-f&src=s&st1=mehrdoost&st2=bahrainian&sid=3a7a2d09d9b7b88fe5d6b1a17235b649&sot=b&sdt=b&sl=50&s=%28FIRSTAUTH%28mehrdoost%29+AND+AUTHOR-NAME%28bahrainian%29%29&relpos=0&citeCnt=1&searchTerm=
https://www.scopus.com/sourceid/12336?origin=resultslist
https://www.scopus.com/authid/detail.uri?origin=resultslist&authorId=55960677700&zone=
https://www.scopus.com/authid/detail.uri?origin=resultslist&authorId=57193500600&zone=
https://www.scopus.com/authid/detail.uri?origin=resultslist&authorId=36813877400&zone=
https://www.scopus.com/authid/detail.uri?origin=resultslist&authorId=55961193600&zone=
https://www.scopus.com/record/display.uri?eid=2-s2.0-85015943144&origin=resultslist&sort=plf-f&src=s&st1=novikov&st2=multicore&sid=45ef8d3c999bfbebca0fe62db2d2054b&sot=b&sdt=b&sl=49&s=%28FIRSTAUTH%28novikov%29+AND+TITLE-ABS-KEY%28multicore%29%29&relpos=0&citeCnt=1&searchTerm=
https://www.scopus.com/record/display.uri?eid=2-s2.0-85015943144&origin=resultslist&sort=plf-f&src=s&st1=novikov&st2=multicore&sid=45ef8d3c999bfbebca0fe62db2d2054b&sot=b&sdt=b&sl=49&s=%28FIRSTAUTH%28novikov%29+AND+TITLE-ABS-KEY%28multicore%29%29&relpos=0&citeCnt=1&searchTerm=
https://www.scopus.com/sourceid/17700155007?origin=resultslist
https://www.scopus.com/sourceid/17700155007?origin=resultslist
https://www.scopus.com/authid/detail.uri?origin=resultslist&authorId=55317817500&zone=
https://www.scopus.com/authid/detail.uri?origin=resultslist&authorId=56202280700&zone=
https://www.scopus.com/authid/detail.uri?origin=resultslist&authorId=56217105100&zone=
https://www.scopus.com/record/display.uri?eid=2-s2.0-85019444110&origin=resultslist&sort=plf-f&src=s&st1=predari&st2=greedy&sid=45ef8d3c999bfbebca0fe62db2d2054b&sot=b&sdt=b&sl=46&s=%28FIRSTAUTH%28predari%29+AND+TITLE-ABS-KEY%28greedy%29%29&relpos=0&citeCnt=0&searchTerm=
https://www.scopus.com/record/display.uri?eid=2-s2.0-85019444110&origin=resultslist&sort=plf-f&src=s&st1=predari&st2=greedy&sid=45ef8d3c999bfbebca0fe62db2d2054b&sot=b&sdt=b&sl=46&s=%28FIRSTAUTH%28predari%29+AND+TITLE-ABS-KEY%28greedy%29%29&relpos=0&citeCnt=0&searchTerm=
https://www.scopus.com/record/display.uri?eid=2-s2.0-85019444110&origin=resultslist&sort=plf-f&src=s&st1=predari&st2=greedy&sid=45ef8d3c999bfbebca0fe62db2d2054b&sot=b&sdt=b&sl=46&s=%28FIRSTAUTH%28predari%29+AND+TITLE-ABS-KEY%28greedy%29%29&relpos=0&citeCnt=0&searchTerm=
https://www.scopus.com/sourceid/26138?origin=resultslist

57

[20] Wang, J., Li Q., Zhu, Z., “Mixed substructure synthesis

method with physics-impedance-modal parameter”, Structural

Engineering and Mechanics, vol 8, 1999, p. 505-512.

[21] Yang, Y.S., Hsieh, S.H., Hsieh, T.J., “Improving parallel

substructuring efficiency by using a multilevel approach”, J. Comp.

Civil Eng., vol 26, 2011, p. 457-464.

https://www.scopus.com/record/display.uri?eid=2-s2.0-0032671726&origin=resultslist&sort=plf-f&src=s&st1=techno-press&st2=wang&nlo=&nlr=&nls=&sid=2264668f18a19e2a916e44eb850e50ed&sot=b&sdt=cl&cluster=scopubyr%2c%221999%22%2ct&sl=41&s=%28ALL%28techno-press%29+AND+AUTHOR-NAME%28wang%29%29&relpos=0&citeCnt=0&searchTerm=
https://www.scopus.com/record/display.uri?eid=2-s2.0-0032671726&origin=resultslist&sort=plf-f&src=s&st1=techno-press&st2=wang&nlo=&nlr=&nls=&sid=2264668f18a19e2a916e44eb850e50ed&sot=b&sdt=cl&cluster=scopubyr%2c%221999%22%2ct&sl=41&s=%28ALL%28techno-press%29+AND+AUTHOR-NAME%28wang%29%29&relpos=0&citeCnt=0&searchTerm=

