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Abstract: 
 

Bending responses are the important characteristics of structures. In this paper, the bending 

solution of the thin and thick beams which are elastically restrained against rotation and 

translation are presented using various theories. Hence, accurate and direct modeling 

technique is offered for modeling of the thin and thick beams. The effect of the values of the 

span-to-depth ratio and type of the beam supports are assessed to state accurate comparison of 

various theories. Finally, the numerical examples are shown in order to present the evaluation 

of the efficiency and simplicity of the various theories. The results of the theories are compared 

with the results of the finite element method (ABAQUS). Based on the results, using the 

Timoshenko beam theory, the obtained values are in good agreement with the Finite Element 

modeling for the values of the span-to-depth ratio (L/h) less than 3. On the other hands, due to 

ignoring the shear deformation effect, the Euler–Bernoulli theory underestimates the deflection 

of the moderately deep beams (L/h=5). 

 

 
1. Introduction 

 

Beams are widely used as classical structural components 

in structural engineering applications. Owing to their practical 

importance, much effort has been devoted to the static and 

dynamic analysis of these structural components. Hence, the 

beam theory has been and is still a subject which has been 

extensively studied for a century. In the theory of beams, two 

different limit cases are usually considered: the Euler-

Bernoulli beam theory and the Timoshenko beam theory. In 

the context of the beam theory, the simplest one is the Euler-

Bernoulli (classical thin) beam theory (EBT) which overlooks 

the shear deformation in the beam thickness. Therefore, the 

shear strains and the shear stresses are eliminated from this 

theory. However, the thick and the moderately thick beams 

are characterized by the non-negligible shear deformations in 

the thickness since the longitudinal elastic modulus is much 

higher than the shear and the transversal module. Hence, the 

use of a shear deformation beam theory is recommended. The 

Timoshenko model is known as first-order shear deformation 

theory (FSDT) and accounts for the shear deformation in 
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thickness in the simplest way (Timoshenko, 1921) [1]. This 

model provides satisfactory results for a wide class of 

structural problems, including the moderately thick beam. 

Moreover, it is used in the large-scale computations typical of 

the industrial applications due to its computational efficiency. 

A beam is typically considered to be thin when the ratio of its 

thickness to length is 1/20 or less. In fact, some of the beams 

used in the practical applications satisfy this criterion. Thus, 

this usually permits the use of classical thin beam theory to 

obtain the beam behavior with good accuracy. However, the 

structural behavior determined by thin beam theory will not 

be accurate for the beam with a thickness ratio of 1/20. These 

inaccuracies are largely eliminated by use of the FSDT, as it 

does include the effects of the additional beam flexibility due 

to the shear deformation, and the additional beam inertia due 

to the rotations (supplementing the translational inertia). Both 

effects decrease the natural frequency and increase the 

deflection and the critical buckling load of the beam. On the 

other hand, there are still other effects not accounted for by 

the FSDT (e.g., the warping of the normals to the mid-plane, 

the stretching in the thickness direction), but these are 

typically unimportant mainly for the vibration, bending, and 

buckling problems up until the very thick beams are 

encountered.  
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Therefore, a three-dimensional analysis should be used for 

the very thick beams. The third-order shear deformation 

theory (TSDT) is proposed for the beams with rectangular 

cross-section by Wang et al. (2000) [2]. The parabolic 

distribution of the transverse shear stress and strain with 

respect to the thickness coordinate are assumed in the TSDT. 

On the other hands, the zero transverse shear stress condition 

of the upper and lower fibers of the cross section is satisfied 

without a shear correction factor in the TSDT (Simsek and 

Kocaturk, 2007) [3]. Ghugal and Sharma (2009) applied the 

hyperbolic shear deformation theory for the static and 

dynamic analysis of the thick beam [4]. The parabolic, 

trigonometric, hyperbolic and exponential functions are used 

in terms of thickness to represent the effect of the transverse 

shear deformation by Sayyad (2011) [5]. Sayyad and Ghugal 

(2011) [6] developed new hyperbolic shear deformation 

theory for the thick beam flexure, in which combined effect 

of the shear and the bending rotations is considered. The new 

Trigonometric shear deformation theory is developed for the 

bending of the thick beam by Naik et al. (2012) [7]. Three 

models for a cantilever beam based on the Euler–Bernoulli, 

Timoshenko and two-dimensional elasticity is presented by 

Labuschagne et al. (2009) [8]. The results showed that the 

Timoshenko beam theory is close to the two-dimensional 

theory for modes of practical importance, whereas, the 

applicability of the Euler–Bernoulli beam theory is limited. 

Yavari et al. (2000) presented some applications of the 

distribution theory of Schwarz to the beam bending problems 

[9]. The steady-state response of the quadratic nonlinear 

oscillator under the weak and the strong external excitations 

is offered by Jiang et al. (2015) [10]. The Lindstedt-Poincare 

method, the multiple-scale method, the averaging method, 

and the harmonic balance method is applied for the analytical 

approximations of the amplitude frequency response. The 

single variable beam theories taking into account effect of 

transverse shear deformation for the buckling, bending and 

free vibration analysis of the thick beam are presented by 

Sayyad and Ghugal (2016) [11]. Also, Thai and Vo (2012) 

developed the various higher order shear deformation beam 

theories for the free vibration and bending of functionally 

graded beams [12]. A new trigonometric shear deformation 

theory for the composite sandwich and the laminated plates 

is developed by Mantari et al. (2012) [13]. Solutions for the 

free vibration of beams with solid and thin-walled cross-

sections are supplied using the refined theories based on the 

displacement variables by Dan et al. (2016) [14]. Petrolo et 

al. (2016) presented the free vibration analysis of the 

damaged beams by means of the 1D (beam) advanced finite 

element models [15]. Also, Cinefra et al. (2017) presented 

the best theory diagrams (BTDs) for multilayered plates 

involved in multi-field problems [16]. A thin-walled beam 

with a varying quadrilateral cross-section is formulated 

based on the higher order beam theory by Choi et al. (2017) 

[17]. Wang (1995) offered the deflection and the stress 

resultants of the Timoshenko beam in terms of the Euler-

Bernoulli beam solutions [18]. The transverse vibration of a 

Timoshenko beam with the one-step change in cross-section 

subjected to an axial force is developed by Janevski et al. 

(2014) [19]. In the present study, the bending solution using 

analytical method is introduced for the analysis of the Euler–

Bernoulli and the Timoshenko beams with arbitrary 

boundary conditions. Furthermore, the analysis for the 

Euler–Bernoulli and Timoshenko beams are written in a 

general form. In general, the main objective of this paper is 

to state the accuracy of various theories for analysis of the 

beam with the various span-to-depth ratio (L/h). For this 

purpose, numerical examples are presented in order to 

evaluate the efficiency and simplicity of the various theories. 

Furthermore, the results of the theories are compared with 

the results of the finite element method (ABAQUS).  

This paper is organized as follows. Section 2 and 3 outline 

the basic equations in detail for arbitrary boundary 

conditions, based on the Euler–Bernoulli beam and the 

Timoshenko beam theories. Susequently, relationships 

between the Euler-Bernoulli beam and the Timoshenko 

beam are presented in section 4, wheras, section 5 presents 

some numerical examples to illustrate the efficiency of the 

various methods. Finally, in section 6, conclusions are 

drawn, briefly. 

 

2. Euler-Bernoulli Beam Theory 

 

The simplest beam theory is known as the Euler-Bernoulli 

beam theory (EBT) or simply the classical beam theory 

(CBT). The EBT is based on the following assumptions 

known as the Euler-Bernoulli assumptions (Carrera et. al., 

2011) [20]: 

 The cross-sections of the beam do not deform in a 

significant manner under the application of transverse 

or axial loads and can be assumed as rigid 

 During deformation, the cross section of the beam is 

assumed to remain planar and normal to the deformed 

axis of the beam. 

These assumptions have been confirmed on a large scale for 

slender beams made of isotropic materials with solid cross-

sections. These assumptions allow to describe the plate 

deformation in terms of certain displacement quantities. A 

beam element with length dx between two cross-sections 
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taken normal to the deflected axis of the beam is shown in 

Fig. 1 (Reddy, 1993) [21]. The first Euler-Bernoulli 

assumption requires that the displacement field be a linear 

function of the thickness coordinate z: 

 

)(),( 10 xFzuzxu   (1) 

)(),( 20 xFzwzxw   (2) 

 

where (u0; w0; F1; F2) are functions to be determined such 

that,  the remaining two assumptions of the Euler-Bernoulli 

hypothesis are satisfied. The inextensibility assumption 

requires that 
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where w is independent of z, i.e., w = w0(x). On the other 

hand, Euler-Bernoulli assumption requires that 
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Fig.1: The coordinate system and notation for the  

Euler-Bernoulli beam  

Hence, the displacement field (1-2) takes the form 
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Thus, the Euler-Bernoulli beam deformation is 

completely determined by the functions (u0; w0), which 

denote the displacements of a point on the mid-plane along 

the two coordinate directions. Note that the displacement 

field (5-6) will result, in spite of neglecting all transverse 

strains and this will be presented in the following pages of 

the paper. According to the Euler-Bernoulli beam theory, the 

governing differential equation for the considered beam can 

be given by: 
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where 
Ew  is the transverse displacement of the mid-surface 

of the beam in the z-direction and q presents the external load 

on the beam which is an arbitrary function of coordinate x. 

In addition, I and E are the second moment of area and 

Young’s modulus of elasticity, respectively. The superscript 

E denotes the Euler-Bernoulli beam quantities. Based on 

Hooke’s law and the Euler-Bernoulli’s assumptions, the 

bending moment–displacement and the shear force–

displacement relations are given by: 
 

2

2

dx

wd
EIM

E
E 

 
(8) 













2

2

dx

wd
EI

dx

d
V

E
E

 

(9) 

 

Thin beam bending solutions can be obtained by solving 

the foregoing governing equation together with the natural 

boundary conditions.  

Although the classical fourth-order beam theory of Euler-

Bernoulli, has been a very useful engineering approximation, 

it has some drawbacks. This theory neglects the shear 

deformations, and as a result, it underestimates deflections 

and overestimates stresses.  

 

3. Timoshenko Beam Theory 

 

Over the years, researchers have tried to modify the 

classical beam theory to relax its restrictions. Several 

alternative beam theories have appeared in the literature, 

among which those of Timoshenko’s is the most well 

known . The theory is based on the following assumptions: 

 The cross-section is rigid and constant 

throughout the length of the beam and has one 

plane of symmetry 

 Shear deformations of the cross-section of the 

beam are taken into account while the elastic 

axial deformations are ignored  

A Timoshenko beam element with length dx between two 

cross-sections taken normal to the deflected axis of the beam 

is shown in Fig. 2. According to the first-order shear 

deformation theory, the displacement field is a linear 

function of the thickness coordinate z: 
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where (u0; w0; F1; F2) are functions to be determined such 

that the remaining two assumptions of the Timoshenko 

hypothesis are satisfied. The inextensibility assumption 

requires that: 
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Thus, w is independent of z, i.e., w = w0(x). Timoshenko 

assumption requires that 
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Finally, the displacement fields are given by 
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Thus, the Timoshenko beam deformation is completely 

determined by the functions (u0; w0), which denote the 

displacements of a point on the mid- 

 

 

Fig.2: The coordinate system and notation for the  

Timoshenko beam  
plane along the two coordinate directions. According to the 

Timoshenko beam theory, the governing differential 

equation for the considered beam can be given by: 
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where 
Tw  is the transverse displacement of the mid-

surface of the Timoshenko beam in the z direction. In 

addition, EI, A, G and   are, the flexural rigidity of the 

beam, the cross-sectional area of the beam, shear modulus, 

and the sectional shear coefficient, respectively. The 

superscript T denotes the Timoshenko beam quantities. 

Based on Hooke’s law and the Timoshenko’s assumptions, 

the bending moment–displacement and the shear force–

displacement relations are given by: 
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Therefore, the Timoshenko beam bending solutions can 

be obtained by solving the foregoing governing equation 

together with the natural boundary conditions.  

 

4. Bending Relationships between Euler-Bernoulli 

and Timoshenko Beams 

 

In this paper, a uniform beam is assumed which is 

partially restrained against translation and rotation at its 

ends. The translational restraint is characterized by the spring 

constant KTL, at one end and KTR at the other end. The 

rotational restraint is characterized by the spring constants 

KRL at one end and KTR at the other end, as shown in Fig. 3. 

Based on the concept of load equivalence for both kinds of 

beams, it can be deduced that the following equilibrium 

equations are as follows: 

 

V
dx

dM
 (20) 

q
dx

dV
 (21) 

 
 

Fig. 3: The beam with general boundary conditions 

 

Substituting Eqs. (9) and (20) into Eq. (21), the governing 

differential equation for the Euler-Bernoulli beam can be 

given as follows [18]: 
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In addition, by substituting Eqs. (18) and (19) into Eqs. 

(20) and (21), the governing differential equation for the 

Timoshenko beam can be given by: 
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By differentiating Eq. (23) with respect to x and using 

Eqs. (24) and (18), the following result is obtained: 
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The general solution of the differential Eq. (25) 

considering Eq. (22) can be stated as: 

 

32

2

1
2

CxC
x

C
dx

dwE

 (26) 

 

On the other hands, it is clear: 
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In this paper, the general boundary conditions associated 

with the beam theory are given below (Ghannadiasl and 

Mofid, 2015) [22]: 

 

   0-K=0V TLw  (30) 

   0K=0M RL  (31) 

   LK=LV TRw  (32) 

   L-K=LM RR  (33) 

 

Furthermore, the bending solution for the Timoshenko 

beam that is obtained by the above procedure has a general 

form. By moving the spring constants of the rotational and 

translational restraint to extreme values (zero and/or 

infinity), a suitable function can be attained for the desired 

combinations of end boundary conditions (i.e. simply 

supported, clamped and free boundary conditions). For 

example, the displacement of the uniform Timoshenko beam 

under the uniform distributed load which is partially 

restrained against translation and rotation at its ends (𝐾𝑅𝑅 =
𝐾𝑅𝐿 = 𝐾𝑅 and 𝐾𝑇𝑅 = 𝐾𝑇𝐿 = 𝐾𝑇) is given below: 
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(34) 

 

The Timoshenko beam theory is equivalent to the Euler-

Bernoulli theory when 1
κAG

EI
 . The displacement function 

for a uniform Euler-Bernoulli and Timoshenko beams with 

the classical end conditions are listed in Table 1. The 

displacement function for a uniform Euler-Bernoulli and 

Timoshenko beams with restrained against translation and 

rotation at its ends are cited in the Appendix. 

 

5. Numerical Results 
 

In this section, the results of different examples are 

presented to illustrate the accuracy of the presented theories. 

The uniform beam with four different boundary conditions 

at its ends, i.e. simply supported, free, sliding and clamped, 

are considered. The uniform beam is supposed with the 

following characteristics: 
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where q is the external uniform distributed load on the 

beam. In addition, L, b, h,  , 𝜅 and E are, the length of the 

beam, the width of the beam, the total depth of the beam, the 

Poisson's ratio, the sectional shear coefficient, and Young’s 

modulus of elasticity, respectively. Figs. 4-8 compare the 

values of the deflection of the beam using the Euler–

Bernoulli and Timoshenko theories along with the Finite 

Element (FE) modeling that is carried out using the 

ABAQUS software package [23]. It can be observed that the 

values obtained using the Timoshenko beam theory are in 

good agreement with the Finite Element modeling for all 

values of the span-to-depth ratio (L/h). Due to ignoring the 

shear deformation effect, Euler–Bernoulli theory 

underestimates the deflection of the moderately deep beams 

(L/h=5). To clearly demonstrate the span-to-depth ratio 

effectiveness in the accuracy of the theories, a theory 

performance index is defined as: 
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where 
case Bernoulli-Euler0xw  denotes the value of the 

maximum displacement of the Euler–Bernoulli theory in 0x

, 
case  Timoshenko0xw  denotes the maximum value of the 

displacement of the Timoshenko theory in 0x , and 

caseElement  Finite0xw  presents the maximum value of the 

displacement of the Finite Element (FE) modelling in 0x . 

To illustrate the theory performance index on the bending 

response of beams under uniform load, the theory 

performance indexes are presented in Table 2. It is observed 

that the beam theory can be considered as the classical beam 

theory when the length to thickness ratio are greater than 20. 

From Table 2, it illustrates that in the Timoshenko beam 

theory with simply supported, fixed  – free, and fixed - sliding 

boundary conditions, the theory performance index for 

L/h=3 are 0.79, 1.81 and 2.54, respectively. Table 2 clearly 

presents that the classical beam theory is almost the same as 

the Timoshenko beam theory when the thickness to length 

ratio reaches the limit of 1/20. Also, it can be seen that,  by 

increasing the thickness to length ratio about L/h=2, the 
FE

TR  will reduce the accuracy of the Timoshenko beam 

theory. On the other hand, the results indicate the significant 

effect of the boundary conditions, not only on the beam 

response, but also on the theory performance. Comparing the 

results of the clamped– simply supported beam and the 

clamped – clamped beam show that the effect of the support 

is more significant. 

 

 
Table. 1: The displacement function for the uniform Euler-Bernoulli and Timoshenko beam with classical end conditions 
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A: L/h=1 B: L/h=2 

 

 

C: L/h=3 D: L/h=5 

 

 

F: L/h=8 G: L/h=10 

  

H: L/h=20 I: L/h=30 

 
Fig. 4: The deflection of the simply supported - simply supported beam under uniform distributed load 
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A: L/h=1 B: L/h=2 

  

C: L/h=3 D: L/h=5 

  

F: L/h=8 G: L/h=10 

  

H: L/h=20 I: L/h=30 

 
Fig. 5: The deflection of the fixed-fixed beam under uniform distributed load 
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A: L/h=1 B: L/h=2 

 

 

C: L/h=3 D: L/h=5 

  

F: L/h=8 G: L/h=10 

  

H: L/h=20 I: L/h=30 

 
Fig. 6: The deflection of the simply supported-fixed beam under uniform distributed load 
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C: L/h=3 D: L/h=5 

  

F: L/h=8 G: L/h=10 

  

H: L/h=20 I: L/h=30 

 
Fig. 7: The deflection of the fixed-free beam under uniform distributed load 
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A: L/h=1 B: L/h=2 

  

C: L/h=3 D: L/h=5 

  

F: L/h=8 G: L/h=10 

  

H: L/h=20 I: L/h=30 

 
Fig. 8: The deflection of the fixed- sliding beam under uniform distributed load 
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Table 2: The theory performance index on the bending response of beams with classical end conditions under uniform load  

Boundary 

conditions 

Theory 

performance 

index 

L/h=1 L/h=2 L/h=3 L/h=5 L/h=8 L/h=10 L/h=20 L/h=30 

simply 

supported 

- simply 

supported 

E

TR  61.07 28.13 14.84 5.90 2.39 1.54 0.39 0.17 

FE

ER  70.99 32.58 15.51 8.91 2.13 3.41 5.16 4.74 

FE

TR  25.48 6.19 0.79 3.19 4.63 5.03 5.57 4.93 

fixed 

fixed 

E

TR  88.69 66.23 46.57 23.88 10.92 7.27 1.92 0.86 

FE

ER  92.44 72.31 52.75 32.86 10.13 4.96 2.94 4.54 

FE

TR  33.19 18.03 11.57 11.79 0.89 2.50 4.95 5.45 

simply 

supported 

-fixed 

E

TR  81.53 53.36 33.92 15.66 6.78 4.45 1.15 0.51 

FE

ER  85.52 60.02 39.23 16.50 4.21 0.81 4.12 5.09 

FE

TR  21.60 14.28 8.04 1.00 2.75 3.80 5.33 5.64 

fixed  -

free 

E

TR  39.53 14.04 6.77 2.55 1.01 0.65 0.16 0.07 

FE

ER  45.98 15.13 5.08 1.03 3.31 3.85 4.58 4.72 

FE

TR  10.67 1.27 1.81 3.67 4.37 4.53 4.75 4.80 

fixed - 

sliding 

E

TR  66.23 32.89 17.89 7.27 2.97 1.92 0.49 0.22 

FE

ER  72.53 38.33 19.98 5.48 0.76 2.32 4.48 4.89 

FE

TR  18.66 8.11 2.54 1.93 3.85 4.33 4.99 5.11 

 

 

Also, the influence of the spring support on the 

theory performance index (
E

TR ) is evaluated. For this 

purpose, the beam is assumed with spring supports, KT 

and KR. The stiffness of the spring is taken as having 

the same values at both of the supports of the beam. 

The beam characteristics are as follows: 
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To illustrate the theory performance index on the 

bending response of beam with spring supports under 

uniform load, the theory performance index is 

presented in Table 3.  

It is observed that the beam with spring supports 

can be considered as clamped at both ends when the 

values of KT EI⁄  and KR EI⁄  are greater than 1000. 

From Table 3, it illustrates that in the beam with 
𝐾

EI
=

50 and 
K

EI
= 500, the theory performance indices are 

10.83 and 10.91 for L/h=8, respectively. Table 3 

clearly presents that the values of the theory 

performance indices are almost the same when the 

rotational springs’ stiffness is larger than 500EI.  
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Table 3: The theory performance index (
E

TR ) on the bending response of beams with spring supports under uniform load  

 L/h=1 L/h=2 L/h=3 L/h=5 L/h=8 L/h=10 L/h=15 L/h=20 L/h=25 L/h=30 

5EI 87.97 64.65 44.84 22.64 10.26 6.82 3.15 1.80 1.16 0.81 

10EI 88.29 65.34 45.59 23.17 10.54 7.01 3.24 1.85 1.19 0.83 

25EI 88.52 65.85 46.14 23.57 10.75 7.16 3.31 1.89 1.22 0.85 

50EI 88.60 66.03 46.35 23.72 10.83 7.21 3.34 1.91 1.23 0.86 

100EI 88.65 66.13 46.46 23.80 10.87 7.24 3.35 1.91 1.23 0.86 

500EI 88.68 66.21 46.54 23.86 10.91 7.27 3.37 1.92 1.24 0.86 

1000EI 88.69 66.22 46.55 23.87 10.91 7.27 3.37 1.92 1.24 0.86 

5000EI 88.69 66.22 46.56 23.88 10.92 7.27 3.37 1.92 1.24 0.86 

10000EI 88.69 66.22 46.56 23.88 10.92 7.27 3.37 1.92 1.24 0.86 

∞ 88.69 66.23 46.57 23.88 10.92 7.27 3.37 1.92 1.24 0.86 

 

 

6. Conclusion 
 

In this paper, the bending solution of the thin and thick 

beams elastically restrained against rotation and translation 

using various theories is presented. An accurate and direct 

modeling technique is introduced for modeling beam with 

arbitrary boundary conditions. Some numerical examples 

are shown in order to present the efficiency and simplicity 

of the various theories. Also, the results of the various beam 

theories are compared with the results of the finite element 

method (ABAQUS). Based on the results, the classical beam 

theory is almost the same as the Timoshenko beam theory 

when the thickness to length ratio reaches the limit of 1/20. 

Also, it can be seen that by increasing the thickness to length 

ratio about L/h=2, the 
FE

TR  will reduce the accuracy of the 

Timoshenko beam theory. On the other hand, the results 

indicate the significant effect of the boundary conditions, not 

only on the beam response, but also on the theory 

performance. Comparing the results of the clamped– simply 

supported beam and the clamped – clamped beam show that 

the effect of the support is more significant. 
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Appendix: 

 

A. Euler-Bernoulli beam with restrained against 

translation and rotation at its ends: 

 

   
   RTLT

RTLRE

KAEIAAK

KAxLAAKA
EIqw

1098

7651

424

2
2






 

 

B. Timoshenko beam with restrained against translation 

and rotation at its ends: 

 

    
   RTLR

RRT

KAKAA

AAAALK
EIqw

252423

21202211

4

24
2




  

 

where 

 xLqx   GA  

 xL EI6  EIGA24 

 

  RTLTRR KAAAxKLKA 4321 4   

  RRKxLxLLA 3232

2 482   

  LTKxLxLxLA 222

3 2   

     RRLT KKxLxLxLxLA 223 322

4   

        RRLT KxLLxLxLEIKxA
2222

RR5 246LKEIL4-2   

  RRLT KxLLEIxLKxLA  423

6  

    RRKxLLxLEIA  22

7 5 

  RRLRRR LKEIKEIKA 8 

  RRLTRR LKEIKLEIKA  33 2

9 

    RRLTRRLR LKEIKLLKEIKA  42 3

10  

  RRLT KAxLLxKA 12

2

11 22   

  22

12 242 xLxLA   

   LTKxLxLxA 22

13 22   

       RTRR KKAxLxxLLxLA 15

3223

14 32   

        LTKxLxLxLxLLEILxA 22222

15 5272   

    22

16 4622 xLxLxxLA   

    xxLxLLA  222217  

      2222

18 523722 xLxLxxLEIEIA   

    xxLLLA   22 2

19 

    xLxLLKEILA RR  420 

        RTRR KKxLxLLxLEIA   252 22

21
 

             RTRRRRLTLR KKAAxLLKAAEIxKKAALA 19181716

2

1413

2

22 12   

  RRLRRRLT LKEIKEIKKA  223 

   RRLTRR KLEILEILKKEIEIA 2

24 3334   

       RRLTRR KLLLEIEILKLKEIA 22

25 2342   

 


