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Abstract: 
 

This paper presents a method to improve the generation of meshes and the accuracy of 

numerical solutions of elasticity problems, in which two techniques of h-refinement and 

enrichment are used by interpolation cover functions. Initially, regions which possess desired 

accuracy are detected. Mesh improvment is done through h-refinement for the elements existing 

in those regions. Total error of the domain is thus reduced and limited to the allowable range. 

In order to increase the accuracy of solutions to an excellent level, the results of mesh refinement 

are reassessed in the next steps and the nodes exceeding the value of allowable error are 

determined. The method automatically improves the subdomain by increasing the order of  

interpolation cover  functions which  yields to solutions of appropriate accuracy. A comparison 

of solutions achieved by the proposed method with that of other methods and also the accurate 

solutions for linear elasticity examples proves acceptable efficiency and accuracy of the 

proposed method. In this research, we illustrate the power of the strategy through the solutions 

obtained for various problems.  

  

D

 

1. Introduction 

 

Today, numerical methods are known to be effective 

solutions for analysis of scientific problems. The most 

popular numerical methods include finite difference method, 

finite volume method, finite point method and finite element 

method. The standard finite element method runs into 

difficulty with highly curved boundaries and lacks enough 

accuracy (Bathe 2006[3]). In this method, another challenge 

is to generate finite element mesh by proper number, type 

and orders of elements.  

Aimed at reducing computational costs of discretization 

and increased solution accuracy, selection of suitable 

solution is of great importance in this method. Refinement 

of standard finite element method is thus observed by 

researchers (Zienkiewicz 2000[22]). 
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 In h-refinement, domain of the problem is initially explored 

by error estimator and regions with discontinuous results are 

then detected and relevant improvement is performed in 

accordance with the rate of error. Relevant approaches of 

error estimation are based on energy norm error and 

L2 norm error. The approaches can estimate error of the 

whole domain and each element. Some posteriori estimators 

also known as anticipatory improvement algorithms are 

merely used for approximation of ordinary differential 

equations at starting point. In finite element method, 

posteriori estimators were used for elliptic differential 

equations with boundary conditions by Babuška & 

Zienkiewicz 1986[2]. 

Based on stress recovery rules, Zienkiewicz and Zhu 

similarly presented a simple technique for total and local 

error estimation in finite element solutions and a simple 

form of adaptive analysis by increasing the number of 

elements (Zienkiewicz & Zhu 1987[23]). Subsequently, they 

introduced SPR method for error estimation of finite element 

solutions and adaptive analysis through two articles 
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(Zienkiewicz & Zhu 1992[24]; Zienkiewicz & Zhu 1992[25]). All 

the approaches seek for local improvement of the domain 

being studied. In other words, instead of the whole domain, 

elements are used only in subdomains whose solutions 

include high discontinuity. To develop finite element 

method, Shi 1985[14] proposed manifold numerical method 

(MNM) as a combination of standard finite element method 

and DDA method (discontinuous displacement analysis. The 

formulation of this method for two and three dimensional 

domain and problems with discontinuous deformation in 

references (Grayeli & Mortazavi 2006[5]; Liu et al 2004[11]) are 

presented. This method is developed to solve crack problems 

and crack propagation within the domain (Xinmei et al 

2010[15]; Zhang et al 2010[21]). Manifold numerical method is 

an effective numerical technique for solving solid mechanics 

problems in which boundary conditions and numerical 

integrations are easily applied. In contrast to standard finite 

element method, this approach suffers a rank deficient 

global matrix. Therefore, various techniques have been 

presented to solve that problem (Ghasemzadeh et al 2014[4]). 

Inspired by numerical manifold method, enrichment by 

interpolation cover is one of the newest approaches 

introduced by Bathe et al 2013[9]. To increase convergence 

rate, the domain was discretised by low-order finite element 

in their proposed method and its results for 3-node triangular 

elements and 4-node tetrahedral elements are presented in 

references (Bathe et al 2013[9]; Bathe et al 2014[10]) via 2D and 

3D analyses. The method is based on finite elements 

enriched by interpolation cover functions on each element 

which leads to an increased convergence rate of solutions. 

Furthermore, the method can also be used in distorted 

elements and the theory used in this method is available in 

references (Jeon et al 2014[6]; Bathe et al 2013[9]; Bathe et al 

2014[10]). Arzani et al 2014[1] and Zeng et al 2016[20] present 

other attempts to increase accuracy of the results in finite 

element and meshless method.  

Element error estimator and error estimation of the 

domain is addressed in the second part of this paper. 

Adaptive analysis of finite element method, interpolation 

cover functions, the algorithm of proposed method and some 

elasticity examples are described in the third, fourth, fifth 

and sixth parts, respectively. Finally, a comparison among 

proposed method and other approaches adapted by 

researchers is presented. 

 

2. Error estimation in finite element method 

 

Equations occupying the domain of a standard problem 

can be simply expressed in elliptic-parabolic space as a 

subset of partial differential equations (Johnson 1987[7]): 

u (x) = f (x), x Ω,

u(x) =0, x Ω,

 


                                       (1) 

Where Ω is the domain on R2 with the boundary of  Ω,
2 2 2 2

1 2
(0, ), ( / ) ( / )R u x u x


          and functions 

of f and u0 are boundary conditions of the problem. The error 

refers to the difference between finite element problem 

solution and improved problem solution. In other words, the 

error of displacement solution is calculated by: 

eu = u - uh (2) 

Where u and uh refer to finite element problem solution 

and improved (approximated) problem solution, 

respectively. The error estimator function used in this 

method is based on (Johnson 1987[7]; Johnson et al 1991[8]). In 

equation (1), the error of finite element linear approximation 

hu  is calculated by L2 norm as follow: 

h hh
(u-u ) α hf β ( u )D  +                              (3) 

The variables α, β and h refer to geometrical conditions 

of elements of the domain whose calculations are completely 

described in the relevant reference. Variable Dh referring to 

variation rate of the quantity along the edge of element is 

expressed as follows: 

i

2 2 1/2

h τ

τ

v
D ( v) ( h [ ] )

n





τ E

=  (4) 

Where hτ is length of the edge τ and nτ are outward unit 

normal vectors to the edge and the expression given in 

brackets is the variation rate of the quantity along the edge 

of element. The resultant value for each three edges of 

element Ei is then added up. Considering plane stress 

conditions and equations occupying the domain, error 

estimator function of an element in elliptic equation is 

defined as: 

2 2 1/2

τ τ h

1

2
E(K) α h(f-αu) β h (n .c u ) )



 
K

τ k

= + (  
(5) 

 

Where E(K) refers to numerical error of L2 norm for K th 

element. Consequently, L2 norm error is determined for all 

elements. The error is employed in both h- and p-refinement. 

H-refinement uses element errors while p-refinement 

employs element error initially converted to nodal values by 

interpolation. 

 

3. Adaptive problem solving in finite element 

method 

 

Standard finite elements are usually influenced by 

geometry of the model, which leads to high gradient 

solutions. The simplest way to eliminate high gradients are 

fragmenting the mesh or increasing the order of 

approximation function for the entire domain. However, this 

will lead to additional computational costs. Thus, it is 

effective to detect some parts of the domain with high 

gradients in their solutions where mesh refinement or high 

order elements can be applied. Therefore, adaptive methods 
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have been considered by many researchers. Adaptive 

refinement is a strategy to prevent excessive increase in 

degree of freedom, number of nodes and element with high 

order. Generally, there are various techniques for adaptive 

problem solving in finite element method. Finite element 

mesh refinement is commonly categorized into two general 

groups. In the first group, mesh refinement is performed by 

increasing degree of freedom through addition of new nodes 

(h-refinement) and in the second group by increasing order 

of elements (p-refinement). Both techniques are utilized in 

this paper. Each technique is briefly explained in the 

following (Yang et al 2016[16]; Yang et al 2016 [17]). 

3.1. H-refinement of the mesh 

To achieve desirable results, when discretising the 

domain, the order of elements is kept in this technique while 

the number and size of elements varies. When error of each 

element is determined in a finite element mesh, elements 

producing more than permitted error are detected. These 

elements are used for refinement in the next step. Adaptive 

refinement and re-meshing can be generally used for this 

purpose. In adaptive refinement, location of existing nodes 

is preserved in each step and some new nodes are introduced 

in elements and added to the domain. In each step of re-

meshing, all existing elements are initially removed and the 

domain is re-discretized by more nodes focused on regions 

with higher error. Adaptive refinement is applied in this 

study, in which bisecting the longest side is used to improve 

the mesh and create new elements. Based on triangular 

elements, bisecting the longest side was first introduced in 

Rosenberg et al 1975[13] to generate new meshes. In recent 

years, this method has been frequently used due to its 

simplicity and efficiency (Plaza et al 2005[12]; Yershov et al 

2016[18]). 

 

3.2. P-refinement of the mesh 

Size and number of elements are constant in this 

technique and mesh refinement is performed for elements 

with excessive error merely through increasing order of 

approximation functions. In this paper, the method proposed 

in Bathe et al 2013[9] is used to enrich points with excessive 

error. Equations involving this method (cover enrichment 

functions) are illustrated in section 4. 

4. Enrichment by cover interpolation covers 

 
In this section, formulation of enriched finite elements are 

briefly explained using cover interpolation functions for 

finite elements of low orders. If a domain is discretized 

through meshing by standard elements, accuracy of 

solutions depends on type and size of elements. In this type 

of enrichment, a cover subdomain is considered for each 

node. Each subdomain has an interpolation function of a 

specified order. These subdomains employ functions of 

higher orders than the standard condition so that more 

accurate solutions are achieved. In Figure 1a, function 
ih  is 

a linear interpolator for node i, which equals one in the node 

i and zero in other points relevant to the node, and 

subdomain of the node i consists of elements connected to 

it. Using linear functions for interpolation of subdomains 

leads to fast computation. The region interpolated for the 

node i by the linear function hi is called covered region of 

the node i and shown by Ci (Fig.1.b). As illustrated in Figure 

1.c, covered region of triangular element m with three nodes 

of i, j and k equals contact region of Ci, Cj and Ck. When 

covered region of nodes is specified, covered regions must 

be enriched. Enrichment is done using polynomials with 

order of p. Interpolated value of unknown u in the node i is 

demonstrated in equation (6) regarding its covered region. 

 p 2 2 p

i i i i i i i i i i
P u u + x y x x y y ... y a     (6) 

In equation (6), variables ( x i, ȳi) represent distance from the 

node i and vector ai shows additional degrees of freedom in 

the node i within the covered region Ci. According to the 

explanations above, cover enrichment approximation of 

field variable u for an element can be expressed by equation 

(7). 
3

i i i i

1

u h u H a   
m

   (7) 

Where 
2 2

i i i i i i i i iH h x y x x y y ... y p     (8) 

Adding up values of equation (7) for existing nodes in an 

element and integrating equations (7) and (8), equation (6) 

can be revised as below. 
3

p

i i

1

u h P   
m

  (9) 

Interpolation by hi
p

iP is used instead of standard 

interpolation, in which hi
p

iP includes common values of 

field variable p

iP besides degrees of freedom corresponding 

to cover functions. The difference is that besides 

interpolated values by standard interpolation, the method 

can achieve better results due to cover enrichment functions. 

An advantage of this method is that order of cover 

function is increased only in regions of undesirable accuracy 

and it is not essential to use enrichment functions in regions 

with desirable accuracy. It should be noted that the order of 

enrichment function is very important and if it equals zero, 

no enrichment is carried out and the results would be the 

same as ones for standard finite element method. 

 

 
Fig. 1: A description of relationships among enriched 

subdomains using cover interpolation functions: a) linear 

interpolation function; b) covered region or elements affected 

by the by cover interpolation functions; and c) an enriched 

element. 
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Performance of proposed method is described here. 

When the error is specified for each element using equation 

(5), the total error of the domains is calculated using sum of 

element values of error. In this step, the total error is initially 

normalized for strain energy occupying the domain and if 

the normalized value exceeds 20%, the mesh must be refined 

through h-refinement. 
n

i
i=1

n n

i i
i=1 i=1

 ( e  ) 
if  <  20  % stop h -refinement

( e U )




 

 
    

(10) 

Where ei and Ui refers to the error and strain energy of 

the element i and n represents number of elements. If 

equation (10) does not work, h-refinement of the mesh is 

required. Therefore, the elements in which error exceeds the 

value determined by equation (11) (50% of maximum 

element error) are initially detected and employed to 

generate new elements (bisecting the longest side). When 

new elements are generated, equation (10) is verified again 

for the resultant mesh. H-refinement will be halted if the 

equation validates within the whole domain, otherwise 

existing elements will be selected again via equation (11) 

and mesh refinement will continue. The process is iterated 

until validation of equation (11) is achieved throughout the 

domain. 

th
if e >0.5 ×max (e ) element i  select for h-refi j   (11) 

  

Where max (ej) represents maximum error of element 

within the domain. 

In the next step, the proposed method tends to refine the 

mesh by cover enrichment functions. Herein the error of all 

nodes is initially determined through interpolation of 

element errors and generation of these values to the nodes. 

According to equation (12), degree of cover enrichment 

interpolating functions is then determined for each node and 

used for enrichment as below. 

 

                n   0.3 γ     p = 0i

0.3 γ   n   0.6 γ     p = 1i
if 

0.6 γ   n   0.8 γ     p = 2i

                 n   0.8 γ     p = 3i

   


    


    
   

 (12) 

 

Where ni refers to the error in node i, γ represents 50% of 

computed maximum nodal error and p refers to order of 

cover enrichment function for a given node.  For 

clarification, the flowchart of the proposed method is 

illustrated in Figure 2. An advantage of this method is that 

enrichment functions are applied only in regions of 

undesirable accuracy. Cover enrichment functions are used 

with various orders regarding the accuracy in each node. It 

prevents an unreasonable increase in computations and 

enhances the accuracy only in regions with excessive errors. 

 

 
Fig. 2: Flowchart of hp-refinement method. 

 

6. Numerical Examples 

 

Herein two standard 2D elasticity problems are presented 

with their boundary conditions from Bathe et al 2013[9] and 

Bathe et al 2014[10] and analyzed by proposed method and the 

results are compared to other methods adopted by 

researchers. In the first problem, a cantilever beam subjected 

to a tip load is investigated. The second problem considers, 

a compressive distributed load applied to the top side of a 

cantilever beam with an elliptical hole in the middle. 

6.1. The example of a cantilever beam with fillets 

In this example, a cantilever beam under plane stress is 

subjected to a tip load and boundary conditions illustrated in 

Figure 3 are studied. Since there is no exact solution for the 

problem, reference Bathe et al 2013[9] has used a very fine 

mesh including 2460 (9-node) quadrilateral elements to 

calculate the reference solution. 

 

Fig. 3: Conditions of a cantilever beam having 

curved boundaries 

 



Numerical Methods in Civil Engineering, Vol. 2, No. 1, September. 2017 

 

In this problem, elasticity modulus E=7.2× 109 Pa, the 

applied load P=10 KN, poison's ratio υ=0.3 and radius of the 

curved parts r =0.2m are considered. Figure 4 demonstrates 

the discretion during problem solving by proposed method. 

Figure 4.a shows initial meshing with a low degree of 

freedom for domain discretization at the beginning of 

problem solving. 

 

  

a b 

  

c d 

Fig. 4: Meshing during problem solving via proposed method 
 

The results of the problem are illustrated in Figure 5. 

Values of column 1 is related to the meshing shown in Figure 

4.d (last step of h-refinement) and values of column 2 are 

associated with the meshing shown in Figure 4.d under 

influence of cover enrichment functions. It must be noted 

that the values are the best results achieved by proposed 

method. Displacement in X direction is represented in 

Figure 5.a and 5.b; displacement in Y direction is 

represented in Figure 5.c and 5.d; stress distribution is 

represented in Figure 5.e and 5.f; and stress distribution is 

represented in Figure 5.g and 5.h. 

 

 

Column 1 Column 2 

  
a b 

  
c d 

  
e f 

  
g h 
Fig. 5:  The results of first problem 

 

To compare proposed method with the other, von Misses 

stress distribution is represented for the problem in Figure 6. 

Figure 6.a (2572 DOFs) refers to proposed method in this 

paper and Figure 6.b (2988 DOFs) is related to the method 

used in Bathe et al 2013[9]. 

 
a 

 
b 

Fig. 6:  Comparison of the results based on von Misses 

stress distribution 

 

6.2. The example of a 2D tool jig problem 

In this example, a cantilever beam subjected to a constant 

pressure load on its top side and boundary conditions 

illustrated in Figure 7 is assessed. According to Bathe et al 

2014[10], the exact solution of the problem has been obtained 

through a very fine mesh including 40000 (9-node) elements 

leading to 323200 degree of freedom. 

 
Fig. 7: Conditions of a 2D tool jig problem 
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In this problem, elasticity modulus E=7.2× 109 Pa, the 

applied load P=100 KN/m, poison's ratio υ=0.3 and radius 

of the curved parts r=2m are considered. Figure 8 

demonstrates the meshing during problem solving via 

proposed method. The problem solving is the same as 

previous examples. Figure 8.a shows initial meshing and 

Figure 8.b represents last step of h-refinement. 

 

 
a 

 
b 

Fig. 8:  Meshing during problem solving via proposed method 
 

The results of problem solving are illustrated in Figure 9. 

Values of column 1 are related to the meshing shown in 

Figure 8.b (last step of h-refinement) and values of column 

2 are associated with the meshing shown in Figure 8.b under 

influence of cover enrichment interpolating functions. 

Displacement in X direction is represented in Figure 9.a and 

9.b; displacement in Y direction is represented in Figure 9.c 

and 9.d; stress distribution is represented in Figure 9.e and 

9.f; and stress distribution is represented in Figure 9.g and 

9.h. 

 

Column 1 Column 2 

  
a b 

  
c d 

  

e f 

  

g h 

Fig. 9:  The results of second problem 

 

To compare proposed method with the other, von Misses 

stress distribution is represented for the problem in Figure 

10. Figure 10.a (2578 DOFs) refers to proposed method in 

this paper and Figure 10.b (11818 DOFs) is related to the 

method used in Bathe et al 2014[10]. 

 

 
Fig.10:  Comparison of the results based on von Misses stress 

distribution 
 

Figures 9 and 10 demonstrate how adaptive interpolation 

leads to more accurate results. As seen in Figure 9, the 

solution is significantly improved using cover 

interpolations. It should be noted that the adaptive method 

appropriately distributes cover orders throughout resultant 

meshing; it mostly employs cover functions of higher orders 

in case of a coarse mesh while it often utilizes interpolating 

covers of lower orders in case of a fine mesh. The challenge 

is properly met using h-refinement in this method. 

Compared to the method adopted in Bathe et al 2014[10], the 

results of this example, which are more complex than the 

first one, use fewer elements and more suitable element 

density for regions with high gradient. Moreover, quality of 

the results is greatly improved because of proper distribution 

of order of enrichment functions in the last step of problem 

solving. 
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7. Conclusion 

In finite element method (FEM), in order to achieve more 

accurate results, engineers access no tools for determining 

proper number and sizes of elements except engineering 

judgment; sizes of elements are almost selected based on 

recommendations which possess deficiencies and cannot be 

applied to all 2D elasticity problems. Uniform fragmentation 

of the mesh, for instance, is a recommendation never 

suggested computationally despite proper results. This paper 

attempts to introduce a combined method to meet the 

challenge suitably. Consequently, error estimation is 

initially performed based on L2 norm and the two methods 

are then employed to refine meshing and increase accuracy 

of existing solutions. The first method utilizes h-refinement 

for adaptive mesh improvement. This technique detects 

regions with excessive error and refines the analysis by 

bisecting the longest side which leads to increased number 

of elements within the region. The process continues until 

validation of error criteria. The second technique employs 

cover interpolation functions as a powerful tool to eliminate 

limitations of FEM. According to error of nodes, the order 

of cover interpolation function is calculated for each node 

within the domain and used in new problem solving. Nodal 

coordinates of points do not change during the calculations, 

but also new points are adaptively introduced within the 

domain using first technique in regions of less accuracy and 

when proper meshing is achieved, second technique will 

lead to more accurate results in problem solving. 

Advantages of proposed method include using a standard 

and efficient norm to determine the error, adaptive mesh 

generation, its validation for many 2D elasticity problems 

with extreme complexity within their domains and 

automatic performance in both steps of h-refinement and 

determining order of cover enrichment functions. This 

method can considerably reduce computational attempts and 

properly enhance accuracy of analytical results. Some 

examples are provided to indicate performance of the 

method. 

This paper attempts to use fewer elements at the 

beginning and subsequently introduces an individual 

generated indicator to determine order of cover enrichment 

functions. In fact, it aims to suggest a method for automatic 

refinement in 2D problems. Improvement of stress field and 

displacement within the domain is evident in the results of 

previous sections. Efficiency of proposed method is 

indicated through an investigation into the results of 

standard examples and other researchers’ works. A 

comparison of the results of this paper with other 

researchers’ works demonstrates efficient accuracy with 

reasonable degree of freedom in FEM. 
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