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Abstract: 
Modal analysis is a powerful technique for understanding the behavior and performance of 

structures. Modal analysis can be conducted via artificial excitation, e.g. shaker or instrument 

hammer excitation. Input force and output responses are measured. That is normally referred 

to as experimental modal analysis (EMA). EMA consists of three steps: data acquisition, 

system identification and modal parameter estimation. EMA, which is also known as 

frequency response function (FRF) testing, has been widely preferred for the modal parameter 

estimation of structures. The main objective of this paper is to determine the locations of 

damages by applying the wavelet transform to the measured mode shapes. The mode shapes 

are obtained from EMA by applying FRF of structure as the input data. In the present work, a 

two-stage method of determining the location of multiple structural damages on space 

structures is proposed. Firstly, EMA is applied to estimate the first mode shape of space 

structure by applying FRF as input data. In the second stage the mechanism of using 2D- 

CWT is applied by exploiting the concept of simulating the mode shape of space structure to a 

2D spatially distributed signal for damage localization of space structure. Multiplicities of 

structural elements and joints are the main challenges related to damage detection of space 

structure. The validation of EMA is performed with modal assurance criterion (MAC). Seven 

numerical examples are conducted on two double layer diamatic domes with different sizes to 

assess the effectiveness of the proposed 2D-CWT method. The results demonstrate the 

reliability and applicability of the introduced method. 

D

D 

1. Introduction  

Pioneering research in the field of damage detection 

started in the late 19th century with the realization that 

only visual inspection of damaged structures was not 

sufficient to maintain the reliability of structures (Cawley 

and Adams 1979). In the last decades the nondestructive 

examination techniques and the structural health 

monitoring techniques as well, have received a 

considerable amount of interest. Reliable nondestructive 

damage detection is essential for the development of 

structural health monitoring.  
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Among nondestructive techniques, global vibration-

based methods are necessary for damage localization of 

large and intricate structures. Vibration based SHM method  

is especially advantageous when compared with traditional 

SHM based on non- destructive testing methods, including 

ultrasonic wave (Sohn et al. 2014[43]), magnetic particle,  

eddy current testing (Nováková et al. 2015[32]) and X-ray 

(Bull et al. 2013[3]) etc., which require accessibility and 

measuring at any potentially damaged area. The difference 

between the calculated and measured responses of the 

structure, is the most efficient way for system identification 

in SHM (Mirzaee et al. 2015[30]). Modal parameters 

depend only on the mechanical characteristics of the 

structure and not on the applied excitation (Wei Fan & 

Pizhong Qiao 2011[49]).  

Xiang and Liang (2012)[50] introduced a new method 

to detect the location of cracks in beam element by 
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applying the wavelet transform to the mode shape and 

using the measured natural frequencies as input data.  The 

effectiveness of the proposed hybrid two-step method was 

demonstrated by numerical simulation and experimental 

investigation of a cantilever beam with two cracks. 

Scanning Laser Doppler Vibrometers (LDV) are useful 

tools for non-contact vibration measurements with high 

resolution in a considerably small period of time. 

Siringoringo and Fujino (2009)[42] developed a modal-

based damage detection method that uses ambient 

vibration and LDV for noncontact operational modal 

analysis of structural members. The system employs 

natural excitation technique to generate the cross-

correlation functions from laser signals, and the 

eigensystem realization algorithm to identify modal 

parameters of structural members. The method was 

validated by an experimental work on cantilever plate. 

 Vibration-based damage detection methods make use 

of dynamic responses of a structure, like natural 

frequencies and mode shapes, and frequency response 

functions as well. Alterations in mode shapes have been 

considered by several researches for damage detection of 

structure. In the method introduced by Qiao et al. 

(2012)[34], frequency based features and time-frequency 

based features were extracted from measured vibration 

signals by Fast Fourier Transform and CWT to form one 

dimensional or two dimensional patterns, respectively. 

Results showed that features of the signal for different 

damage scenarios could be uniquely identified by these 

transformations, and suitable correlation algorithms could 

perform pattern matching that identified damage location. 

Radzienski et al. (2011)[36] introduce a method for 

structural damage detection based on experimentally 

obtained modal parameters. Pandey et al. (Pandey et al. 

1991[33]) introduced a curvature mode shape method as a 

possible candidate for identifying and locating damage in 

a structure.  The results show that sudden changes in the 

curvature mode shapes is localized in the location of 

damage and can be used to detect damage in a structure. 

Genetic algorithm is applied by Maity et al. (Sanayei & 

Onipede 1991[41])  to detect the structural damage from 

changes in natural frequencies. They formulate the inverse 

problem in optimization terms and then utilize a solution 

procedure with genetic algorithm to assess the damage. 

Meruane used real-coded genetic algorithm method to 

detect structural damage. It addresses the set-up of the GA 

parameters and operators. The studies include different 

objective functions, which are based on frequencies, mode 

shapes, strain energy and modal flexibility (Meruane & 

Heylen 2011[29]). A methodology is presented by John B. 

Kosmatka (1999)[21] for detecting structural damage in 

structural systems. The procedure is based on using 

experimentally measured modes and frequencies in 

conjunction with vibratory residual forces and a weighted 

sensitivity analysis to estimate the extent of mass and 

stiffness variations in a structural system. The method is 

demonstrated by using a ten-bay space truss as an 

experimental test bed for various damage scenarios. 

Xu et al. (2014)[52] experimentally explored the 

possibility of using the added stiffness provided by control 

devices and frequency response functions (FRFs) to detect 

damage in a building complex. Scale models of a 12-

storey main building and a 3-storey podium structure were 

built to represent a building complex. The experimental 

results showed that the FRF-based damage detection 

method could satisfactorily locate and quantify damage. 

Lee & Shin (2002)[24] introduced a FRF based structural 

damage identification method with two practical 

strategies. The first strategy is to obtain as many equations 

as possible from measured FRFs by varying excitation 

frequency as well as response measurement point. The 

second strategy is to reduce the domain of problem, which 

can be realized by the use of reduced-domain method 

introduced in this study. Mohan et al. (2013)[31] used the 

FRF with the help of Particle Swarm Optimization (PSO) 

technique, for structural damage detection and 

quantification. FRF is used as input response in objective 

function, and PSO algorithm is used to predict the 

damage. Efficacy of these tools has also been tested on 

beam and plane frame structures. 

Golafshani et al. (2010)[11] presented a methodology 

which applies FRF data at some frequency points to arrive 

at perturbations to the stiffness matrix due to some defects 

in the structure. The method is demonstrated numerically 

on a spring mass system (shear building) and then applied 

to an offshore jacket platform. Salehi et al. (2010)[40] 

used both imaginary and real part of FRF shapes in the 

damage detection by applying the gapped smoothing 

method. A clamped aluminum beam model is used to 

generate numerical simulated FRFs for healthy and 

damaged states which are then put into proposed 

methodology. Li et al. (2015)[25] measured the impact 

force and acceleration responses from hammer tests and 

analyzed it to obtain the frequency response functions at 

sensor locations by experimental modal analysis to 

identify the damage of the slab. 

In recent years, the use of wavelet analysis in damage 

detection has become an area of research. Alteration of the 

vibration characteristics of the structure, such as the 

natural frequency, displacement, mode shapes and 

damping ratios are signs to observe the damage in the 

structure (Gholizad & Safari 2016[10]). These features are 

crucial for structural health monitoring systems, including 

structural damage detection, localization and 

quantification (Hsieh & Halling 2008[19]; Wei Fan & 

Pizhong Qiao 2011[49]). Signal processing based methods 

are typified by Fourier transform (Quek et al. 2003[35]; 

Roveri & Carcaterra 2012[38]), wavelet transform 

(Hajizadeh & Salajegheh 2016[13]), time–frequency 

analysis (Hamzeloo et al. 2012[14]; Bharathi Priya & 

Likhith Reddy 2014[2]), and intelligent computation 

(Strang & Nguyen 1996[46]). Wavelet transform 

background goes back to the beginning of the last century 

(Haar 1910[12]), and its development as an engineering 

signal processing analysis tool for SHM is rather new 

(Surace & Ruotolo 1994[47]). The main advantage gained 

by using wavelets is the ability to perform local analysis 

of a signal which is capable of revealing some hidden 

aspects of the data that other signal analysis techniques 

fail to detect.  

Performance of a wavelet analysis heavily depends on 

wavelet type, number of vanishing moments, scale and 
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translation parameters. A decentralized damage 

identification method using wavelet signal analysis tools 

embedded with wireless smart sensors has been proposed 

by Yun et al. (2011)[55]. Hoon et al. (2004)[18] used 

wavelet transform as a tool to detect changes in the 

response of a structure with an active sensing system to 

produce a near-real-time, online monitoring system. 

Wavelet-based methods have been applied by researchers 

for detection and localization of damages in one-

dimensional structural parts (beams) (Zhong & Oyadiji 

2011[56]; Xiang & Liang 2012[50]; Song et al. 2014[45]) 

and 2D plane problems (plate) (Gandomi et al. 2011[9]; 

He & Zhu 2015[15]). 

The separability of compactly supported wavelets gives 

an opportunity to obtain 2D wavelets, which can enlarge 

the field of application for plane problems both in 

theoretical investigations and practical engineering tasks. 

Applications of 2D damage detection problems were 

proposed by Wang & Deng (1999)[48]. The crack location 

on a steel plate was detected by a variation of the Haar 

wavelet coefficients. The selection of an appropriate 

wavelet for damage detection is a crucial problem in the 

wavelet-based methods. Application of various wavelets 

to this problem analyzed their effectiveness based on the 

length of an effective support and the number of vanishing 

moments of a given wavelet were introduced by Rucka & 

Wilde (2006)[39]. Huang et al. (2009)[20] used Mexican 

Hat wavelet for 2D, and 3D (three-dimensional) wavelet 

transform for damage detection. The feasibility of the 

method is demonstrated using two illustrative examples: 

one is based on the crack-tip strain field of a plate 

subjected to bi-axial loads, and the other is based on the 

deflection field of a simply supported plate with defects 

subjected to static or impacting transverse loads. The 

results indicate that the damage positions are accurately 

located, and the damage severity is qualitatively assessed. 

Other similar studies with different types of 2D wavelets 

and algorithms have been proposed by researchers for 

detecting damage in plates (Douka et al. 2004[6]; Katunin 

2011[22]; Gallego et al. 2013[8]; Yang et al. 2013[53]; 

Makki Alamdari et al. 2015[27]; Xu et al. 2015[51]). If an 

EMA is performed, then wavelet analysis can be applied 

to estimated mode shapes or their derivatives to detect 

changes induced by damage. It is successfully applied to 

beams and plates by researchers (Zhong & Oyadiji 

2011[56]; Solís et al. 2013[44]; Xu et al. 2015[51]). 

Damage detection of truss like structures with limited 

number of elements have been studied by various methods 

(Yun 2012[54]; Rezaiee-Pajand & Kazemiyan 2014[37]). 

Space structures, which enable the designers to cover 

large spans as sports stadiums, assembly halls, exhibition 

centers, shopping centers and industrial buildings have 

been widely applied by structural and architecture 

engineers in the recent decades.  

The main objective of this paper is proposing an 

applicable method for estimating the mode shape of 

structures for determining the location of damages on space 

structures by applying the wavelet transform to the 

measured mode shapes. We proposed a method where the 

mode shape of structure can be estimated by EMA 

according to FRF obtained from the sensors installed at the 

nodes. FRF is calculated from dynamic response of 

structure. The mechanism of 2D-CWT is applied by 

exploiting the concept of simulating the estimated mode 

shape of space structure to a 2D spatially distributed signal 

for damage localization of space structure. Numerical 

results show the high efficiency of the proposed method for 

accurately identifying the location of multiple structural 

damages. 

 

2. Theoretical Background 

2.1 Experimental modal analysis 

It is commonly known that the presence of damage 

influences vibration parameters of the examined 

component. One of vibration parameters very sensitive to 

damages is the mode shape. Measuring the mode shape 

characteristics of structure with proper accuracy was 

almost impossible in the past times. Recently, advanced 

technological devices, like scanning laser doppler 

vibrometer and wireless smart sensors, enable exact mode 

shapes properties with acceptable accuracy, in a short time 

(Lieven & Ewins 2001[26]).  

Mode shape of intact and damaged space frame can 

be estimated according to the calculated FRF from 

dynamic analysis of space structure. FRF is applied as the 

input data to EMA. Line-fit method is employed for EMA 

as introduced by Kouroussi (Kouroussis et al. 2012[23]). 

 

2.2 Frequency response function 

A frequency response function implies the response 

of a structure to an imposed force as a function of 

frequency. The response can be displacement, velocity, or 

acceleration. The relationship between Force and 

Response demonstrates as follows 

𝑋(𝜔) = 𝐻(𝜔)𝐹(𝜔)                                                             (1) 

𝐻(𝜔) =
𝑋(𝜔)

𝐹(𝜔)
                                                                       (2) 

Where 𝐻(𝜔) is FRF, 𝑋(𝜔) is response in frequency 

domain and 𝐹(𝜔) is external force presented in frequency 

domain. The FRFs are taken as the ratio of Fourier 

Transforms of the time domain response and input forces. 

One term in the series form of the frequency response 

function 𝐻𝑖𝑗  can be expressed as 

𝐻𝑖𝑗 =
𝑋𝑖

𝐹𝑗

= ∑
𝐵𝑖𝑗𝑘

𝜔𝑘
2 − 𝜔2 + 𝜂𝑘𝜔𝑘

2

𝑛

𝑘=1

                                     (3) 

Where 𝜔𝑘 is the kth resonance frequency, 𝜔 is working 

frequency, 𝜂𝑘  is the kth modal damping loss factor and 

𝐵𝑖𝑗𝑘 (modal constant) are the modal parameters of mode 

k. 𝐻𝑖𝑗 is the term of FRF that relates to impact at point j 

and response at point i. n is the number of natural 

frequencies considered for calculation of FRF. These 

methods exploit interesting properties of a FRF like the 

circularity in the immediate vicinity of resonance or the 

linearity of inverted FRFs, which are associated to 

important statement in modal analysis theory. 

Space structure has large number of nodes and 

elements. Practically, installation of sensor in all nodes of 
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space structure is impossible and extremely costly. In this 

study, sensors are installed in the nodes of top layer in the 

checkered form to access the variations in the response 

data of damaged structure in compression to complete one 

in all areas of space frame. 

To evaluate the accuracy of applied EMA method, 

analytical modal analysis is performed and the modal 

assurance criterion (MAC) is used which can be computed 

as:  

𝑀𝐴𝐶𝑘 =
|𝜙𝑘

𝑚𝑇
𝜙𝑘

𝑐𝑎𝑙𝑐|
2

(𝜙𝑘
𝑚𝑇

𝜙𝑘
𝑚) (𝜙𝑘

𝑐𝑎𝑙𝑐𝑇
𝜙𝑘

𝑐𝑎𝑙𝑐)
                                   (4) 

Where 𝜙𝑘
𝑚 and 𝜙𝑘

𝑐𝑎𝑙𝑐  denote the modal vectors 

obtained from an EMA and analytical model, respectively. 

The subscripts k, denote the orders of the modes; and the 

superscript T, denotes the transpose of a vector. The 

damage is simulated in analytical model by diminishing 

Young’s modulus of elements in the damaged region 

located in the previous step. 

 

2.3 Theory of wavelet transform 

Wavelet analysis provides a powerful tool to 

characterize the local features of a signal. Unlike the 

Fourier transform, where the function used as the basis of 

decomposition is always a sinusoidal wave, other basis 

functions can be selected for wavelet shape corresponding 

to the features of the signal. These basis functions are 

named mother wavelet. A mother wavelet is a real or 

complex-valued function  𝜓(𝑥)𝜖 𝐿2(𝑅) of zero average 

and finite length. 𝐿2(𝑅), denotes the Hilbert space of 

measurable, square-integrable one-dimensional functions 

(Mallat 2008[28]). 

∫ 𝜓(𝑥)𝑑𝑥 = 0                                                                    
+∞

−∞
 (5) 

This can be dilated or compressed with a scale 

parameter a, and translated by a position parameter b as 

follows: 

𝜓𝑎,𝑏(𝑥) =
1

√𝑎
𝜓 (

𝑥−𝑏

𝑎
)      𝑎 > 0, 𝑏𝜖𝑅                                  (6) 

The wavelet transform of 𝑓(𝑥)𝜖 𝐿2(𝑅) at the scale 𝑎 

and position 𝑏 is computed with continuous wavelet 

transform defined as follows: 

𝑊𝑓(𝑎, 𝑏) = 〈𝑓, 𝜓𝑎,𝑏〉  =
1

√𝑎
∫ 𝑓(𝑥)𝜓∗ (

𝑥−𝑏

𝑎
) 𝑑𝑥        

+∞

−∞
  (7) 

where 𝑊𝑓(𝑎, 𝑏) is called a wavelet coefficient for the 

wavelet 𝜓𝑎,𝑏(𝑥) and measures the variation of the signal 

in the vicinity of 𝑎 whose size is proportional to 𝑏 and 

𝜓∗ is the complex conjugate of the mother wavelet 

function 𝜓. 

When using the wavelet for signal analysis, if the 

scale parameter a is small, it results in very narrow 

windows and is appropriate for high-frequency 

components in the signal 𝑓(𝑥). On the other hand, if the 

scale parameter a is large, it results in wide windows and 

is suitable for the low-frequency components in the signal 

𝑓(𝑥). The greater the scale is, the more detailed the 

frequency division is. 

 

2.4 Two-dimensional continuous wavelet transform 

The two-dimensional CWT (2D-CWT) is a natural 

extension of the one-dimensional CWT, with the 

translation parameter being a vector in the plane. As in the 

1D case, a 2D wavelet is an oscillatory, real or complex-

valued function 𝜓(�⃗�)𝜖 𝐿2(𝑅2, 𝑑2�⃗�) satisfying the 

admissibility condition on real plane �⃗� 𝜖 𝑅2, 𝐿2(𝑅2, 𝑑2�⃗�) 

denoting the Hilbert space of measurable, square 

integrable 2D functions on the plane. If 𝜓 is regular 

enough as in most cases, the admissibility condition can 

be expressed as: 

𝜓(0⃗⃗) = 0 ⟺ ∫ 𝜓(�⃗�)𝑑2�⃗� = 0                                         
𝑅2   (8) 

Function 𝜓(�⃗�) is called mother wavelet and usually 

localized in both the position and frequency domains. The 

mother wavelet 𝜓 can be transformed in the plane to 

generate a family of wavelet 𝜓𝑎,�⃗⃗�,𝜃
(�⃗�). A transformed 

wavelet 𝜓𝑎,�⃗⃗�,𝜃(�⃗�) under translation by a vector �⃗⃗�, dilation 

by a scaling factor 𝑎, and rotation by an angel 𝜃 can be 

derived as (Rucka and Wilde 2006[39]): 

𝜓𝑎,�⃗⃗�,𝜃(�⃗�) = 𝑎−1𝜓 (𝑟−𝜃 (
𝑥−�⃗⃗�

𝑎
))        𝑎 > 0,  𝑏⃗⃗ ⃗, 𝜃𝜖𝑅2       (9) 

Given a 2D signal 𝑓(�⃗�)𝜖𝐿2(𝑅2, 𝑑2�⃗�), its 2D-CWT 

(with respect to the wavelet 𝜓) 𝑊𝑓(𝑎, �⃗⃗�, 𝜃) is the scalar 

product of 𝑓(�⃗�) with the transformed wavelet 𝜓𝑎,�⃗⃗�,𝜃 and 

considered as a function of (𝑎, �⃗⃗�, 𝜃) as:  

𝑊𝑓(𝑎, �⃗⃗�, 𝜃) =

〈𝑓, 𝜓𝑎,�⃗⃗�,𝜃〉  
1

√𝑎
∫ 𝑓(�⃗�)𝜓∗ (𝑟−𝜃 (

𝑥−�⃗⃗�

𝑎
)) 𝑑2�⃗�

+∞

−∞
                 (10) 

where the 𝜓∗ denotes the complex conjugate and 𝑟−𝜃 

is the 2D rotation matrix as: 

𝑟−𝜃 = [
𝑐𝑜𝑠(𝜃)      − 𝑠𝑖𝑛(𝜃)

𝑠𝑖𝑛(𝜃)          𝑐𝑜𝑠 (𝜃)
]                                              (11) 

The 2D-CWT is a space scale representation of a 

plane and acts as a local filter with scale and position. If 

the wavelet is isotropic, there is no dependence on angle 

in the analysis. The Mexican hat wavelet is an example of 

an isotropic wavelet. Isotropic wavelets are suitable for 

point wise analysis of a 2D system. If the wavelet is 

anisotropic, there is a dependence on angle in the analysis, 

and the 2D-CWT acts a local filter with scale, position, 

and angle. The Morlet wavelet is an example of an 

anisotropic wavelet. In the Fourier domain, this means 

that the spatial frequency support of the wavelet is a 

convex cone with the apex at the origin. Anisotropic 

wavelets are suitable for detecting directional features. 

The point wise nature of the 2D damage detection in 

the space structure has made the isotropic wavelets 

suitable for this kind of structure. The chosen wavelet 

function is isotropic Mexican hat wavelet, and the scaled 

is equal to 2. Wavelet computation is performed using 

MATLAB code. The denoising and filtering capability of 

the isotropic 2D-CWT provides us with an important 

analysis tool in practice. The Mexican hat wavelet is real 

and isotropic. The 1D Mexican hat wavelet is the second 

derivative of the Gaussian function, as shown in Fig. 1. 

Likewise, the 2D Mexican hat wavelet is the Laplacian of 

the 2D Gaussian function. It was first proposed by 

Hildreth (1984)[16] as a differential-smooth operator for 

their edge contours detection theory. Its expression in the 

position domain is (Fan & Qiao 2009[7]): 

𝜓(�⃗�) = (2 − |�⃗�|2)𝑒𝑥𝑝 (−
1

2
|�⃗�|2)                                     (12) 
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Fig.1: Mexican hat mother wavelet 

3. Method 

In the present section, the structure of proposed 

method for damage detection of space structure is 

described. First, EMA technique is applied to estimate the 

first mode shape of intact and damaged structure. The 

measured FRF of structure is considered as the input data 

for EMA. Second, 2D-CWT technique is employed to the 

isosurface of intact and damaged first mode shape on 

(𝑥, 𝑦) plane to revel the location of damage. Finally, the 

effectiveness of the proposed method for damage 

detection of space structures will be evaluated by applying 

on introduced space frame.  

Step 1.  Estimating mode shapes of structure 

First of all, the geometric pattern of space structure is 

created using Formian software. Secondly, the modified 

geometric pattern is analyzed by SAP2000 and truss 

elements cross section are designed according to the 

LRFD AISC (1999)[1]. At the end, the open-source finite-

element package Opensees is used to perform the dynamic 

analysis by applying a sinusoidal external force at the 

nodes of top layer. Vertical displacement of each node of 

top layer is measured. A MATLAB code is written and 

the FRF of nodes is calculated from the dynamic response 

of structure by imposing the sinusoid load in the 

frequency range from zero to 200 Hz with 0.5 Hz step. 

The load is imposed in node j and the response is 

measured in node i to calculate the 𝐻𝑖𝑗  term of FRF. The 

introduced EMA method is used to calculate the mode 

shapes of the intact and damaged structures. Analytical 

modal analysis is performed by Opensees to evaluate the 

accuracy of applied EMA method according to the MAC 

introduced in Eq. 4. 

Step 2. Generating isosurface 

The three-dimensional coordinate of nodes need to be 

decreased to a two-dimensional plain to employ 2D-CWT. 

Therefore, the isosurface of joints on (𝑥, 𝑦) plane is 

created by applying the values of estimated mode shapes 

of nodes. Isosurface is the image of nodes coordinate on 

(x,y) plain and the values of z coordinate is set to be zero. 

Coordinate of joints and outline shape of isosurface is 

determined according to the geometric features of 

structure. The isosurface is reshaped to be rectangular by 

assuming zero values for empty arrays and the arrays 

outside real shape of isosurface. Finally, zero arrays of 

isosurface matrix are replaced by values from linear 

interpolation. The generated isosurface 𝑓(�⃗�) can be 

directly used to indicate the location and area of the 

damage. 

Step 3. 2D-CWT analysis 

In practice, this could be verified by observing that the 

natural frequencies and mode shapes of the structure are 

not drastically changed after the damage imposing event. 

Wavelet transforms are a mathematical means for 

performing signal analysis. The specific properties of 

wavelet analyses on diagnosing changes in signal makes 

them useful tools for damage detection through 

application of signal processing. The 2D-CWT is 

implemented in MATLAB to the modified isosurface. 

Once the 2D-CWT is computed, we face a problem of 

visualization of wavelet coefficients because 𝑊𝑓(𝑎, �⃗⃗�, 𝜃) 

is a function of four variables: its position (𝑥, 𝑦), scale 𝑎, 

and angle 𝜃. Since the isosurface in this study is oriented 

in x- and y-directions, the most effective angle 𝜃 for our 

damage detection algorithm should align with x- or y-axis, 

i.e., 𝜃 = 0 𝑜𝑟 𝜋/2 . Hence, for simplicity, the variable 𝜃 is 

fixed at 𝜃 = 0 in this study. 

Step 4. Boundary distortion and noise effect treatment 

In the wavelet base damage detection methods, 

researchers always face two main problems of boundary 

distortion and noise effects. The wavelet coefficients will 

be inevitably distorted by the discontinuity of mode 

shapes at their ends and could reach an extremely 

high/low value near the boundaries, where there is no 

possibility for damage to occur. A two-step method is 

applied to alleviate the distortion of coefficients caused by 

the boundary condition and noise effects. Firstly, the 

mode shape data is extended beyond its original boundary 

by the cubic spline extrapolation based on points near the 

boundaries (Fan and Qiao 2009). Secondly, the noise 

effects of EMA and 2D-CWT are treated by calculating 

the absolute difference values of wavelet coefficients 

derived from 2D-CWT analysis of intact and damaged 

structure as (Castro, García-Hernandez et al. 2006; 

Gallego, Moreno-García et al. 2013): 

𝐷(�⃗�) = |𝑊𝑓𝑎 − 𝑊𝑓𝑑|                                                          (13) 

 where 𝑊𝑓𝑎 and 𝑊𝑓𝑑 are the 2D-CWT coefficients of 

intact and damaged space structure respectively. Finally 

by plotting the isosurface of 𝐷(�⃗�) values, location and 

area of the damage can be defined.  

 

4. Application Examples 

In this study, the double-layer diamatic dome is 

considered to evaluate the applicability of introduced 

multiple structural damage detection method. Two 

different sizes of dome structure are considered to 

evaluate the accuracy of method in various size of space 

structures. 

https://en.wikipedia.org/wiki/Signal_processing
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Fig.2: diagram of damage locations detection 

Space Structure consists of steel truss elements 

(tubular part) and connectors (ball joint). MERO jointing 

system is the most common type of ball joint. MERO joint 

consists of a ball with hot-pressed steel forging material 

and flat sides with tapped holes in the center of each side 

if necessary. Tubular parts include a cone-shaped steel 

welded at both ends, which house connecting steel bolts. 

Bolts are tightened by means of a hexagonal sleeve and 

dowel pin arrangement. The details of the MERO jointing 

system is shown in Fig. 3. Up to 18 tubular members are 

connected together at various angles. The axes of 

members pass through the center of the ball and eliminate 

the eccentricity of loads at the joint. Thus, the joint is only 

under the axial forces. In a double-layer space structure, 

the ball joint system can be subjected to tension or 

compressive axial forces. Then tensile forces are carried 

along the longitudinal axis of the bolts and resisted by the 

tubular parts at the end of cones. In the mechanism of 

MERO joint, the compressive forces do not produce any 

stresses in the bolts; they are distributed to the node 

through the sleeves. 

 
Fig.3: MERO jointing system with two tubular elements 

According to step one, a three phases design procedure 

is implemented to perform an eigenvalue analysis and 

dynamic time history analysis to calculate the analytical 

mode shapes and FRFs of space frame, respectively. The 

programming language Formian is utilized to create the 

polyhedric configuration of space frame, including node 

coordinates. The outcome geodesic form of space frame is 

exported to SAP2000. The general view of selected space 

frames in SAP2000 are depicted in Fig. 4. Geometric 

properties of introduced double layer diamatic domes are 

illustrated in Table 1. 

Table 1. The structural properties of sample systems 

Type Property Value (unit) 

A 

Radius of top circum sphere 12 (m) 

Radius of bottom circum sphere 11 (m) 

Sweep angle 40 

Frequency of top layer 6 

Number of sectors 4 

Number of elements 867 

Number of joints 229 

B 

Radius of top circum sphere 50 (m) 

Radius of bottom circum sphere 48.5 (m) 

Sweep angle 40 

Frequency of top layer 16 

Number of sectors 6 

Number of elements 9216 

Number of joints 2352 

 

 

Fig.4: General view of the double-layer diamatic dome, (a) 

Diamatic dome type A, (b) Diamatic dome type B 
 

In the second step, imported geometric data in 

SAP2000 is exploited to design the tubular parts. It is 

assumed that tubular part has uniform area and material 

properties along its length. Beam element applied for 

tubular parts with modulus of elasticity 𝐸 = 200 𝑘𝑁/
𝑚𝑚2, density 𝜌 =  8000 𝑘𝑔/𝑚3, yield stress 0.25 𝑘𝑁/
𝑚𝑚2  and the Poisson’s ratio 𝜇 =  0.3. The designed pipe 

sections for tubular parts of double layer space structures 

are shown in table 2. 
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Table 2. Cross-section properties of tubular parts of 

double layer space structures 

section 

Outside 

diameter 

(cm) 

Wall 

thickness 

(cm) 

Cross-

Section 

area (cm2) 

mass per 

miter length 

(kg) 

P30 3 0.28 2.39 0.192 

P40 4 0.3 3.49 0.279 

P55 5.5 0.35 5.66 0.453 

P70 7 0.35 7.31 0.585 

P80 8 0.4 9.55 0.764 

P90 9 0.5 13.35 1.068 

P100 10 1 28.27 2.263 

 

The illustrated pipe sections in table 2 are modeled by 

one-dimensional  frame element with three degrees of 

freedom at each of its two nodes and designed according 

to the LRFD AISC (1999)[1] provision. In the last step, 

the designed section properties of tubular parts and 

geometric properties are imported from SAP2000 and 

used to carry out the set of modal analyses in the open-

source finite-element package Opensees. The analytical 

Opensees model, consists of nodes coordinate, material 

properties and section assignments. 

Uniaxial bilinear steel material is assigned for tubular 

parts with the same material properties introduced in the 

previous step and strain-hardening ratio 0.05. Uniaxial 

Section is applied to define the section properties of 

tubular parts according to axial force-deformations curve, 

cross-section area and mass per unit length value. 

Opensees is used as explained in step one to perform an 

eigenvalue and dynamic analyses to calculate the mode 

shapes and FRFs of both intact and damaged space 

structures respectively. The isosurfaces of first natural 

frequency with equal elevation on (𝑥, 𝑦) plane for EMA 

of sample systems are illustrated in Fig. 5.  

 

 
Fig.5: Isosurface of the first natural frequency for experimental 

modal a) Diamatic dome type A, b) Diamatic dome type B 

The accuracy of applied EMA method is assessed by 

MAC in Eq. 4 and the results for the first mode shapes are 

presented in table 3. 

 

Table 3. MAC for EMA of introduced models 

Model type First mode shape 

A 0.9941 

B 0.9984 

 

The 2D-CWT analysis with Mexican hat mother 

wavelet is exploited to the isosurface generated by the 

experimental mode shape. Damage usually causes a 

reduction in the local stiffness of the structures. One 

option is to model this damage in stiffness of element by 

reduction in Modulus of Elasticity. This equivalent 

modeling approach is often sufficient for the identification 

of local damage (Homaei et al. 2014[17]). Damage can be 

simulated in the ball joint by a reduction in the stiffness of 

all its connected tubular parts. Four damage scenarios are 

selected to evaluate the applicability of introduced method 

as illustrated in table 4. 

Table 4. Damage scenarios of sample systems 

Model 

type 
Scenario 

No. 

Damaged 

elements 

number 

Damaged 

Joints 

number 

A 

1 - 20 

2 251 - 

3 
37 - 

236 - 

4 
227 - 

228 - 

B 

5 5317 - 

6 

6391 - 

6392 - 

6358 - 

7 
- 2290 

- 1530 

 

The introduced scenarios are selected to evaluate the 

ability of proposed method to detect multi-damage in joints 

and tubular parts of space frames. 

Mexican hat wavelet is used to decompose the 

isosurface of the first experimental mode shape of intact 

and damaged systems. The 2D wavelet coefficients of 

intact and damaged space frames for introduced scenarios 

are illustrated in Figs 6 and 7. 
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Fig.6: (a) 2D-CWT for the intact isosurface of type A dome 

structure; 2D-CWT for the damaged isosurface of type A dome 

structure (b) Scenario 1;(c) Scenario 2;(d) Scenario 3; (e) 

Scenario 4 

 

 
 

 
Fig.7: (a) 2D-CWT for the intact isosurface of type B dome 

structure; 2D-CWT for the damaged isosurface of type B dome 

structure (b) Scenario 5;(c) Scenario 6;(d) Scenario 7 

According to the above graphical results, the location 

of damage is unclear in the noisy pattern. Damage index 

𝐷(𝑥, 𝑦) is employed from Eq. 13 to decrease the noise 

effects of EMA and 2D-CWT as explained in step 4 and 

the results are plotted in Figs 8 and 9.  

Figs 8 and 9 show the smoothed surface for the 

applied damage scenarios depicted in table 3. The results 

demonstrate the applicability of proposed method for 

multi-damage detection in elements and nodes of space 

structure. 
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Fig.8: Damage index for the first mode shape of Type A 

dome structure: (a) Scenario 1; (b) Scenario 2; (a) Scenario 3; (d) 

Scenario 4 

 

 

 

 

 
Fig.9: Damage index for the first mode shape of type B 

dome structure: (a) Scenario 5; (b) Scenario 6; (a) Scenario 7 

 

5. Conclusions 

This paper presents an EMA method based on FRF for 

measuring the mode shape of space structure to determine 

the locations of damages by applying the wavelet 

transform to the measured mode shapes. The mechanism 

of 2D-CWT is applied by exploiting the concept of 

simulating the experimental mode shape of space structure 

to a 2D spatially distributed signal called isosurface. The 

peaks or sudden changes in the isosurface are associated 

to the damage locations. Boundary distortion and noise 

effect of EMA and 2D-CWT are diminished according to 

step 4. 

 In order to evaluate the accuracy of the proposed 

method for damage detection of space structures, seven 

illustrative examples are considered in two different sizes 

of diamatic double layer dome. 

 The damage scenarios are selected intentionally to 

evaluate the applicability of method in elements and nodes 

of space structure for different possible cases of damages. 

The numerical results reveal that the combination of the 

2D-CWT algorithm together with EMA is a Fast and 

accurate technique for multiple damage detection of space 

structures that is free from the size and geometrical 

properties of structure. 
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