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Abstract: 
 

To control structures against wind and earthquake excitations, Adaptive Neuro Fuzzy 

Inference Systems and Neural Networks are combined in this study. The control scheme consists 

of an ANFIS inverse model of the structure to assess the control force. Considering existing 

ANFIS controllers, which require a second controller to generate training data, the authors’ 

approach does not need another controller. To generate control force, active and semi-active 

devices could be used. Since the active ANFIS inverse controller may not guarantee a 

satisfactory response due to different uncertainties associated with operating conditions and 

noisy training data, this paper uses MR dampers as semi-active devices to provide control 

forces. To overcome the difficulty of tuning command voltage of MR dampers, a neural network 

inverse model is developed. The effectiveness of the proposed strategy is verified and illustrated 

using simulated response of the 3-story full-scale nonlinear benchmark building excited by 

several earthquake records through computer simulation. Moreover, the recommended control 

algorithm is validated using the wind-excited 76-story benchmark building equipped with MR 

and TMD dampers. Comparing results with other controllers demonstrates that the proposed 

method can reduce displacement, drift and acceleration, significantly. 

 

 

1. Introduction 

With the increasing studies in the field of structural 

control, various control methods have been proposed. 

Generally, these schemes can be divided into two groups. 

The first one comprises control strategies that require 

accurate mathematical formulation for the structural model. 

Although structural models can be developed, there are 

many sources of uncertainty, measurement noise and 

nonlinearity that reduce effectiveness of control algorithms. 

LQR, LQG, H2 and sliding model control techniques are  
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some instances of this group. In recent years, there has been 

a growing trend toward utilization of intelligent control as a 

second group of control methods (Al-Dawod et al. 2004[1]; 

Pourzeynali et al. 2007[20]; Rezaiee-Pajand et al. 2009[21]; 

Karamodin et al. 2012[10]; Marinaki et al. 2015[16]; Park 

& Ok 2015[19]). This group of controllers which does not 

require an accurate mathematical model of structure 

includes neural network and fuzzy control methods.  

Fuzzy logic provides a Powerful tool for utilization of 

human expert knowledge in complement to mathematical 

knowledge. The main advantages of the fuzzy controller are: 

 (a) It is capable of handling the non-linear behavior of 

the structures. 
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(b) It can tolerate uncertainties such as structural 

uncertainties and assumed loading distribution. 

(c) It is one of the few mathematical model-free 

approaches for structural control. 

(d) It can be adapted to new situations by modifying its 

rules or membership functions. 

Artificial Neural Network (ANN) controller is another 

control method, which is associated with intelligent control 

methods. ANN is a system that includes a number of similar 

non-linear processing elements. These processing elements 

operate in parallel and are arranged in patterns similar to the 

patterns found in biological neural nets. The processing 

elements or nodes are connected to each other by adjustable 

weights. These weights will change in such a way to achieve 

a desired input-output relationship. ANNs can be used for 

time series prediction, classification, and control and 

identification purposes. Several strategies have been 

presented for structural control using ANNs (Jung et al. 

2004[8]; Bani-Hani et al. 2006[2]; Lee et al. 2006[15]; 

Kumar et al. 2007[12]).  

Adaptive-network-based fuzzy inference system 

(ANFIS) is a very powerful approach for modeling complex 

and nonlinear systems (Kadhim 2011[9]). It has the 

advantages of learning capability of neural networks and 

expert knowledge of fuzzy logic. ANFIS includes a fuzzy 

inference system whose membership functions are 

interactively adjusted according to a given set of input and 

output data. Schurter & Roschke (2001)[22] and Gu & 

Oyadiji (2008)[6] used ANFIS for control of structure. In 

their approach, training data was generated using LQR and 

LQG controllers, respectively. The disadvantage of training 

ANFIS using other controllers is that, the trained ANFIS 

controller works worse than the reference controllers, in 

most situations. In best conditions, an ANFIS controller can 

work as well as reference controllers.  

Since the semi-active control combines the adaptability 

associated with active control and the reliability associated 

with passive control, it is generating great interest among 

researchers in the field of structural control (Choi et al. 

2004[3]; K-Karamodin et al. 2008[14]; Karamodin et al. 

2012[10]; Kerboua et al. 2014[11]). The 

magnetorheological (MR) damper is a device in this class 

that generates force in response to velocity and applied 

voltage. Because of the inherent nonlinear nature of this 

device, one of the challenging aspects of utilizing this 

technology is in the development of suitable control 

algorithms. Several strategies have been developed for 

control of MR dampers. Dyke et al. (1996)[4] developed a 

semi-active clipped-optimal control algorithm to reduce the 

response of structure with a MR damper. In their strategy, 

the command voltage of the MR damper was tuned by a 

linear optimal controller combined with a force feedback 

loop. The command signal was adjusted at either zero or the 

maximum level, depending on how the damper’s force 

compared with the desired optimal control force. Choi et al. 

(2004)[3] presented a semi-active fuzzy control strategy for 

seismic response reduction using an MR damper. In their 

approach, the output variable of the fuzzy controller was the 

command voltage of MR damper. Karamodin et al. 

(2008)[14] designed a neuro-predictive algorithm to predict 

the voltage command of MR damper to provide the control 

force determined by LQG controller.  

In this paper, ANFIS based inverse model control is 

developed for semi-active control of structures based on 

acceleration feedback. This method is a straightforward 

method to design a controller in which the controller is the 

inverse of the plant. This approach only needs one learning 

task to find the plant inverse and doesn’t require other 

controllers to generate training data. Here, MR dampers are 

selected as semi-active devices to provide control forces. To 

set the command voltage of each MR damper in order to 

provide the desired force determined by ANFIS controller, 

an NN inverse model of MR damper is employed. The 

effectiveness of proposed strategy is verified and illustrated 

using simulated response of the 3-, and 76-story benchmark 

buildings excited by various earthquake records and wind, 

respectively. The results are compared with passive and 

active control systems. 

 

2. Benchmark Building Model 

 

2. 1. 3-Story Benchmark Building  

 

The nonlinear benchmark 3-story building used for this 

study was defined by Ohtori et al. (2004)[17] in the problem 

definition paper. The building is 11.89 m in height and 36.58 

m by 54.87 m in the plan. The first three natural frequencies 

of the 3-story benchmark evaluation model are: 0.99, 3.06, 

and 5.83 Hz. Four historical ground motion earthquake 

records (two far-field and two near-field) are selected for 

study: El Centro (1940), Hachinohe (1968), Northridge 

(1994) and Kobe (1995). Control actuators are located on 

each floor of the structure to provide forces to adjacent 

floors. Since the MR dampers capacity is limited to a 

maximum force of 1,000 kN, three, two and two dampers are 

used at the first, second and the third floors of the structure 

respectively to provide the required larger forces. Three 

sensors for acceleration measurements are employed for 

feedback in the control system on the first, second and third 

floors. Moreover, three sensors for velocity measurement 

are used on the floors to determine the voltage of MR 

dampers based on the command force. 

During large seismic events, structural members can 

yield, resulting in nonlinear response, behavior that may be 

significantly different from a linear approximation. To 

represent the nonlinear behavior, a bilinear hysteresis model 
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is used to model the plastic hinges (Fig. 1). These plastic 

hinges, which are assumed to occur at the moment resisting 

column-beam and column-column connections, introduce a 

material nonlinear behavior of these structures. 

To determine the time-domain response of such nonlinear 

structures, the Newmark-β Time-step integration method 

developed in MATLAB by Ohtori & Spencer (1999) [18] is 

used. The incremental equations of motion for the nonlinear 

structural system take the following form: 

𝑀∆�̈� + 𝐶∆�̇� + 𝐾∆𝑈 = −𝑀𝐺∆𝑋�̈� + 𝑃∆𝑓 + ∆𝐹𝑒𝑟𝑟        (1) 

where, M, C, and K are the mass, damping and stiffness 

matrices of the building, ΔU is the incremental response 

vector, G is a loading vector for the ground acceleration, 

∆𝑋�̈� is the ground acceleration increment, P is a loading 

vector for the ground forces, Δf is the incremental control 

force and Δferr is the vector of the unbalanced forces. 

 

 
Fig. 1: Bilinear hysteresis model for structural member bending. 

 

 

2. 2. 76- Story Benchmark Building 

 

The nonlinear benchmark 76-story building used for this 

study was defined by Yang et al. (1999)[24] in the problem 

definition paper. The building is a 76-story 306 meters 

concrete office tower proposed for the city of Melbourne, 

Australia. It is slender with a height to the width ratio of 7.3; 

hence, this structure is wind sensitive. The first five natural 

frequencies are 0.16, 0.765, 1.992, 3.790 and 6.395 Hz, 

respectively. Damping ratios for the first five modes are 

assumed to be 1% of critical for the proportional damping 

matrix. A semi-active tuned mass damper (TMD) includes a 

MR damper and an inertial mass of 500 tons that is installed 

on the top floor. The mass is about 45% of the top-floor 

mass, which is 0.327% of the total mass of the building. The 

damper natural frequency is tuned to 0.16 Hz and its 

damping ratio is set at 20%. The well-known Davenport 

wind load spectrum, which has been used in the Canadian 

design code, is used herein for along-wind loads. A sensor 

for acceleration measurement is employed for feedback in 

the control system on the 76th floor, and two sensors are 

employed for velocity measurement on the 76th floor and 

TMD to determine the voltage of MR damper based on the 

control force. 

 

3. MR Damper Model 

 

An MR damper typically comprises of a hydraulic 

cylinder, magnetic coils, and MR fluids that consist of 

micrometer-sized magnetically polarizable particles floating 

within oil-type fluids. In the presence of a magnetic field, 

the particles polarize and provide an increased resistance to 

flow. By altering the magnetic field, the desired behavior of 

MR dampers can be earned. Since MR fluid can be changed 

from a viscous fluid to a yielding solid within milliseconds, 

and the resulting damping force can be notably large with a 

low-power requirement, MR dampers are appropriate for 

full-scale applications (Xu et al. 2000[23]).  

Suitable modeling of the control devices is essential for 

precise prediction of the behavior of the controlled system. 

The simple mechanical model shown in Figure 2 was 

developed and shown to accurately predict the behavior of 

the MR damper over a wide range of inputs (Dyke & Carlson 

1999[5]). The equations governing the force, f, predicted by 

this model are as follows: 

 

𝑓 = 𝑐0�̇� + 𝛼𝑧 (2) 

�̇� = −𝛾|�̇�|𝑧|𝑧|𝑛−1 − 𝛽�̇�|𝑧|𝑛 + 𝐴�̇� (3) 

 

 
Fig. 2: Mechanical model of MR damper. 

 

Where x is the displacement of the device, and z is the 

evolutionary variable that accounts for the history 

dependence of the response. The model parameters depend 

on the voltage, v, to the current driver as follows: 

 

𝛼 = 𝛼𝑎 + 𝛼𝑏𝑢 (4a) 

𝑐0 = 𝑐0𝑎 + 𝑐0𝑏𝑢 (4b) 
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where u is given as the output of the first-order filter: 

 

�̇� = −𝜂(𝑢 − 𝑣) (5) 

 

Equation 5 is used to model the dynamics involved in 

reaching theological equilibrium and in driving the 

electromagnet in the MR damper (Dyke & Carlson 1999[5]). 

This MR damper model is used in this study to model the 

behavior of the MR damper. Selected parameters of the MR 

damper are given in Table 1: 

 

Table 1: MR damper parameters. 

MR damper parameters 

𝛼𝑎 1.0872e5 N/cm 𝐴 1.2 

𝛼𝑏 4.9616e5 N/(cm V) 𝛾 3 cm-1 

𝑐0𝑎 4.40 N s/cm 𝛽 3 cm-1 

𝑐0𝑏 44.0 N s/(cm V) 𝜂 50 s-1 

𝑛 1   

 

 

These parameters are based on the identified model of an 

MR damper tested at Washington University (Yi et al. 

2001[25] & 2009[26]) and scaled up to have maximum 

capacity of 1000 kN with maximum command voltage 

Vmax= 10 V. 

 

4. Overview of the ANFIS 

 

ANFIS is a fuzzy Sugeno model with a framework to 

facilitate learning and adaptation procedure. Such 

framework makes fuzzy logic more systematic and less 

relying on expert knowledge. The objective of ANFIS is to 

tune the parameters of a fuzzy system by utilizing a learning 

procedure using input-output training data. A technique 

consisting of the least square algorithm and back 

propagation is usually used for training fuzzy inference 

system (Kadhim 2011[9]). Basic architecture of ANFIS 

which has two inputs x and y and one output f is shown in 

Figure 3. Assuming that the rule base contains two Takagi-

Sugeno if-then rules as follows: 

 

Rule 1: If x is A1 and y is B1 Then f1 = p1 x+ q1y + r1 

Rule 2: If x is A2 and y is B2 Then f2 = p2x + q2y + r2 

 

 
Fig. 3: Structure of ANFIS. 

 

The general ANFIS control structure is presented here. 

This structure includes the same components as the fuzzy 

interference systems, except for the NN block. The structure 

of the network is comprised of a set of units (and 

connections) arranged into five connected network layers as 

shown in Figure 3, where square nodes are named adaptive 

nodes, to demonstrate that the parameters in these nodes are 

adjustable, while circle nodes are named fixed nodes, to 

demonstrate that the Parameters are fixed. Then the node 

function in each layer is described below: 

Layer 1 (Fuzzy layer): This layer consists of 

membership functions of  input variables. Every node i in 

this layer has a node function (Jang 1993[7]): 

 

𝑂𝑖
1 = 𝜇𝐴𝑖(𝑥), 𝑂𝑖

1 = 𝜇𝐵𝑖(𝑦), 𝑓𝑜𝑟 𝑖 = 1,2,3 (6) 

 

where x and y are inputs to node i, and 𝑂𝑖
1 is the 

membership function of Ai and Bi (linguistic labels for 

inputs). 

Layer 2 (Production layer): Every node in this layer 

multiplies the incoming signals and sends the product out 

(Jang 1993[7]). 

 

𝑂𝑖
2 = 𝑤𝑖 = 𝜇𝐴𝑖(𝑥). 𝜇𝐵𝑖(𝑦), 𝑓𝑜𝑟 𝑖 = 1,2,3 (7) 

 

Layer 3 (Normalized layer): The ith node of this layer 

calculates the ratio of the ith rules firing strength to the sum 

of all rules’ firing strengths (Jang 1993[7]): 

 

𝑂𝑖
3 = �̅�𝑖 =

𝑤𝑖

𝑤1 + 𝑤2 + ⋯ + 𝑤9
, 𝑓𝑜𝑟 𝑖 = 1,2, … ,9 (8) 
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Layer 4 (Defuzzy layer): Every node i in this layer has a 

node function (Jang 1993[7]): 

 

𝑂𝑖
4 = �̅�𝑖 . 𝑓𝑖 = �̅�𝑖 . (𝑝𝑖𝑥 + 𝑞𝑖𝑦 + 𝑟𝑖) (9) 

 

where wi is the output of layer 3 and {pi, qi, ri} is the 

parameter set. Parameters in this layer will be referred to as 

consequent parameters. 

Layer 5 (overall output layer): This layer sums up all 

the inputs coming from layer 4 and transforms the fuzzy 

classification results into a crisp (Jang 1993[7]). 

 

𝑂𝑖
5 = ∑ �̅�𝑖𝑓𝑖

𝑖

=
∑ 𝑤𝑖𝑓𝑖𝑖

∑ 𝑤𝑖𝑖
 

 

(10) 

 

 

The ANFIS structure is adjusted automatically by least-

square estimation & the back propagation algorithm. 

Because of its flexibility, the ANFIS strategy can be used for 

a wide range of control applications (Kusagur et al. 

2010[13]). 

 

5. ANFIS Inverse Training  

 

The structure of the ANFIS inverse based control system 

is mainly composed of the ANFIS inverse network of the 

plant, which is used as a controller to generate the control 

action. To obtain the ANFIS inverse model of a plant, it is 

placed in series with the plant as shown in Figure 4. For the 

training, the input-output data set is used to reflect input-

output characteristics of the plant. 

 

 
Fig. 4: The training process of ANFIS based on inverse plant 

model. 

 

6. Proposed Control Strategy 

 

6.1. ANFIS inverse controller 

 

In this study, ANFIS based inverse model control is 

developed for semi-active control of structure. To do so, first 

an inverse emulator ANFIS of structure is trained. As shown 

in Figure 5, the input to this emulator is the structure’s 

response, and the output is the actuator signal. The training 

data is generated by actuating the structure and recording the 

sensor readings. When the trained inverse emulator is used 

as the controller, its input is the response of the structure 

under external excitation, and the ANFIS’s output is the 

actuator signal required to reduce the response.  

 

 
Fig. 5: The training process of inverse ANFIS of structure used in 

this study. 

 

Effectiveness of the proposed controller is dependent on 

defining a correlation between response of structure and control 

signals. Here, ANFIS calculates control force based on current 

and previous time steps of acceleration feedback. Acceleration 

is selected for feedback control because accelerometers are 

durable measuring devices with a small power requirement 

which are widely available and relatively inexpensive (Schurter 

& Roschke 2001[22]). Three controllers are used for first, 

second and third story of the 3-story, and a controller is used for 

76-story building. To actuate the structure for generating data, 

control force is generated randomly using band limited white 

Gaussian noise. Acceleration due to this force is calculated 

considering nonlinear material behavior described by Ohtori et 

al. (2004)[17] and briefly presented in this paper for 3- story and 

linear behavior for 76-story building. 

By performing trial and error, it is seen that ANFIS structure 

with five triangular MFs for each input (25 if-then rules) and a 

linear output MF show satisfactory performance. Because the 

exact determination of input MFs coordinate is extremely 

complicated, they are assumed similar for simplicity. 

 

6.2. Inverse MR Damper 

 

The MR damper model estimates damper forces in 

response to the inputs of the reactive velocity and the issued 

voltage as described by Equations 2 to 5. Since the damper 

velocity is the same as the velocity of the floor to which the 

damper is connected, the voltage signal is the only parameter 

that can be altered to control the damper behavior to generate 

the required control force. Since the ANFIS controller 

estimates the required control force, in this study, the inverse 

behavior of the MR damper is modeled to solve the force 

tracking task by MR damper in the closed-loop cycle. To do 

so, a feed-forward back-propagation neural network is 
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constructed to copy the inverse dynamics of the MR damper 

(Fig. 6). To generate training data, the velocity and voltage 

are produced randomly using band limited white Gaussian 

noise and resulted force of the MR damper is calculated 

using the Equations 2 to 5. The sampling rate of the training 

data was 50 Hz for 90 sec periods, which resulted in 4500 

patterns for training, testing and validation. The input states 

at time instant k for inverse model of MR damper are the 

damper velocity �̇�(𝑘) and desired control force fdes (k) and 

the three previous histories of them, and the output state is 

current v(k) (Fig. 6).  

To select the network architecture, it is required to 

determine the transfer function, numbers of inputs, outputs, 

hidden layers, and nodes in the hidden layers, which are 

usually performed by trial and error. The most suitable input 

data in our case were found to be the current and the three 

previous histories for the damper velocity and desired 

control force. In addition, one hidden layer, with ten nodes, 

was adopted as one of the best suitable topologies for the 

NN. The tansig activation function is used for the hidden 

layer and the linear function for the output layer, which 

represents the control voltage. 

Figure 7 shows the proposed control strategy which 

includes ANFIS controller, inverse NN model of MR 

damper and MR damper. 

 

 

 
Fig. 6: The training process of inverse model of MR damper. 

 

 
Fig. 7: Proposed control strategy. 

 

7. Control Performance 

 

To demonstrate the effectiveness of the proposed 

strategy, response of the 3-, and 76-story benchmark 

buildings excited by various earthquake records and wind 

are simulated, respectively. To verify the accuracy of the 

solver, the frequency and response of uncontrolled structures 

were compared with the benchmark problem papers 

(references [17] and [24]) 

The performance of the NN inverse model of MR damper 

is checked based on the comparison of the ideal force to the 

force generated by combining of the inverse MR damper and 

MR damper. Figure 8 shows the force generated by the MR 

damper compared with the ideal force generated randomly. 

It can be seen that the damper forces follow the target force 

closely. Figures 9 and 10 show the command voltage and the 

control force for 3-story and 76-story benchmark buildings, 

respectively. 
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Fig. 8: Comparing desired force and produced force of MR damper. 

 
Fig. 9: Comand voltage and control force of story 2 for the 3-story benchmark building under the El Centro earthquake. 
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Fig. 10: Comand voltage and control force for the 76-story benchmark building. 

 

7.1.   3-story building  

 

To evaluate proposed control strategy, four historical 

records (two far-field and two near-field) are chosen as 

specified by Ohtori et al. (2004)[17] for the nonlinear 

benchmark buildings as follows: (1) El Centro. The N-S 

component recorded at the Imperial Valley Irrigation 

District substation in El Centro, California, during the 

Imperial Valley, California earthquake of May 18, 1940. (2) 

Hachinohe. The N-S component recorded at Hachinohe City 

during the Tokachi-oki earthquake of May 16, 1968. (3) 

Northridge. The N-S component recorded at Sylmar County 

Hospital parking lot in Sylmar, California, during the 

Northridge, California earthquake of January 17, 1994. (4) 

Kobe. The N-S component recorded at the Kobe Japanese 

Meteorological Agency station during the Hyogo-ken 

Nanbu earthquake of January 17, 1995. The absolute peak 

ground accelerations of these records are 3.417, 2.250, 

8.2676, and 8.1782 m/sec2, respectively. Totally, 10  

 

 

earthquake records are considered in the evaluation of the 

control strategy, including: 0.5, 1.0 and 1.5 times the 

magnitude of El Centro and Hachinohe; and 0.5 and 1.0 

times the magnitude of Northridge and Kobe. 

To display the performance of the proposed controller, 

the relative displacement in the first story is compared in 

Figure 11 with the uncontrolled structure under the different 

earthquakes. As can be seen, the relative displacement is 

considerably reduced after control action. Additionally, it 

seems that the control algorithm can prevent the plastic 

deformations in Elcentro and Hachinohe earthquakes. 

However, because Northridge and Kobe earthquakes are 

near-field earthquakes, and they have a big PGA, the 

proposed controller could not prevent the plastic 

deformations. 
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Fig. 11: Comparison of the first relative displacement for uncontrolled and ANFIS.

In addition, the performance of the controller is checked 

based on the evaluation criteria specified (J1-J6) for the 

nonlinear benchmark buildings (Ohtori et al. (2004)[17]), 

which are briefly presented in Table 2. These criteria are 

calculated as a ratio of the controlled and the uncontrolled 

responses. The first three criteria are established on peak 

interstory drift ratio (𝐽1), level acceleration (𝐽2) and base 

shear (𝐽3), over the range i=[1,3] where 𝑑𝑖(𝑡) is the 

interstory drift of story i over the time history of each 

earthquake, ℎ𝑖 is the height of story i, 𝛿𝑚𝑎𝑥 is the maximum 

interstory drift ratio of the uncontrolled structure computed 

using equation of |𝑑𝑖(𝑡) ℎ𝑖⁄ |𝑡,𝑖  
𝑚𝑎𝑥 , �̈�𝑎𝑖(𝑡) and �̈�𝑎

𝑚𝑎𝑥 are 

absolute acceleration of story i with and without control 

devices respectively, 𝑚𝑖 is the seismic mass of story i and 

𝐹𝑏
𝑚𝑎𝑥 is the maximum base shear of the uncontrolled 

structure for each respective earthquake. 

The second three criteria are established on the building 

responses’ norm. The inter story drift (𝐽4), level acceleration 

(𝐽5), and base shear (𝐽6) are defined by their norms, which 

are based on the structural forms. It should be added that the 

norm, ‖ . ‖ , is calculated by the following equation 

‖ . ‖ = √
1

𝑡𝑓
∫ [ . ]2𝑑𝑡

𝑡𝑓

0

 

 

(11) 

 

and 𝑡𝑓 is an adequately large time to allow the response of 

the structure to diminish.  

To make a comparison, an active fuzzy controller called 

SOFLC designed by Al-Dawod et al. (2004)[1] and an active 

LQG controller are used. Moreover, two passive systems, 

passive off (POFF) and passive on (PON) are simulated. In 

these systems, voltage of MR dampers is set to minimum 

(zero) and maximum (ten) during the excitation, 

respectively.  
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Table 3 presents the evaluation criteria as the ratio of the 

controlled response to the uncontrolled response for each 

earthquake record individually for proposed controller 

(ANFIS), LQG, SOFLC, passive on and passive off control 

systems. This table shows that the proposed control system 

reduced J1, J2, J3, J4, J5 and J6, 33%, 9%, 3%, 29%, 38%, 

and 41%, respectively. In other words, ANFIS has a 

significant effect on normed interstory drift, acceleration and 

base shear and also peak of interstory drift, but a poor effect 

on peak acceleration and base shear. Comparing ANFIS and 

LQG controllers shows that the LQG performed slightly 

better than ANFIS controller. 

Results also show that the passive on the system 

performed better than other systems in most criteria, 

especially the criteria associated to drift. This system 

decreased J1 and J4, 53% and 75% and also decreased J2, J3 

and J6, 16%, 13%, and 25%, respectively. Unfortunately, the 

normed acceleration is increased 80% using passive on the 

system; therefore, this system can’t be used where occupant 

comfort is a high priority. 

Table 3 also shows that passive off and SOFLC were by 

far the worst control systems, especially SOFLC that 

increased peak base shear, normed acceleration and normed 

base shear, 14%, 8%, and 27%, respectively. 

 

7.2.   76-story building  

 

In addition to simulation of the 3-story building under 

earthquake excitations, here, the 76-story benchmark 

building equipped with MR and TMD dampers is simulated 

under 500 seconds wind excitation to evaluate the proposed 

control strategy. The wind velocity can be separated into an 

average wind velocity and a wind fluctuation component. 

Consequently, the wind load composed of a static load due 

to the average wind velocity and a dynamic load due to wind 

velocity fluctuations. For structural control, only the 

fluctuating wind loads will be considered. Since the building 

is symmetric in both horizontal directions, the axis of elastic 

centers and the axis of mass centers coincide; therefore, 

there is no coupled lateral-torsional motion. Further, to 

reduce the computational efforts, only the along-wind 

motion will be considered. The Davenport wind load 

spectrum, which has been used in the Canadian design code, 

is used herein for along-wind loads. 

The performance of the controller is evaluated based on 

the correlation of the response of controlled and 

uncontrolled building. Moreover, active LQG controller and 

passive TMD (PTMD) are used for comparison. Responses 

which are checked herein are the peak and RMS of 

displacement and acceleration for stories 1, 30, 50, 55, 60, 

65, 70, 75 and 76. 

Table 4 presents the results for different controllers and 

different stories. This table shows that the proposed 

controller (ANFIS) reduced the peak and RMS displacement 

of stories about 30% and 38%, respectively. In addition, the 

peak and RMS acceleration of stories are decreased about 

50%. 

Comparing the result for ANFIS and PTMD shows that 

although ANFIS didn’t decrease the peak acceleration as 

much as PTMD, it decreased the peak and RMS 

displacement and RMS acceleration more than PTMD in 

deferent stories. Table 4 also shows that the active LQG 

controller reduced displacement and acceleration more than 

the proposed controller.  

 

 

 

 

 
Table 2: Performance criteria for 3- story building. 

𝐽1 = 𝑎𝑣𝑒𝑟𝑎𝑔𝑒 𝐸𝑙 𝐶𝑒𝑛𝑡𝑟𝑜
𝐻𝑎𝑐ℎ𝑖𝑛𝑜ℎ𝑒
𝑁𝑜𝑟𝑡ℎ𝑟𝑖𝑑𝑔𝑒

𝐾𝑜𝑏𝑒

{
𝑚𝑎𝑥𝑡,𝑖

|𝑑𝑖(𝑡)|
ℎ𝑖

𝛿𝑚𝑎𝑥
} 

Interstory drift ratio 

𝐽2

= 𝑎𝑣𝑒𝑟𝑎𝑔𝑒 𝐸𝑙 𝐶𝑒𝑛𝑡𝑟𝑜
𝐻𝑎𝑐ℎ𝑖𝑛𝑜ℎ𝑒
𝑁𝑜𝑟𝑡ℎ𝑟𝑖𝑑𝑔𝑒

𝐾𝑜𝑏𝑒
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𝑚𝑎𝑥𝑡,𝑖|�̈�𝑎𝑖(𝑡)|

�̈�𝑎
𝑚𝑎𝑥 } 

Level acceleration 

𝐽3

= 𝑎𝑣𝑒𝑟𝑎𝑔𝑒 𝐸𝑙 𝐶𝑒𝑛𝑡𝑟𝑜
𝐻𝑎𝑐ℎ𝑖𝑛𝑜ℎ𝑒
𝑁𝑜𝑟𝑡ℎ𝑟𝑖𝑑𝑔𝑒

𝐾𝑜𝑏𝑒

{
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𝐹𝑏
𝑚𝑎𝑥 } 

Base shear 

𝐽4 = 𝑎𝑣𝑒𝑟𝑎𝑔𝑒 𝐸𝑙 𝐶𝑒𝑛𝑡𝑟𝑜
𝐻𝑎𝑐ℎ𝑖𝑛𝑜ℎ𝑒
𝑁𝑜𝑟𝑡ℎ𝑟𝑖𝑑𝑔𝑒

𝐾𝑜𝑏𝑒

{
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Normed interstory drift ratio 

𝐽5
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𝐽6 = 𝑎𝑣𝑒𝑟𝑎𝑔𝑒 𝐸𝑙 𝐶𝑒𝑛𝑡𝑟𝑜
𝐻𝑎𝑐ℎ𝑖𝑛𝑜ℎ𝑒
𝑁𝑜𝑟𝑡ℎ𝑟𝑖𝑑𝑔𝑒

𝐾𝑜𝑏𝑒

{
‖∑ 𝑚𝑖�̈�𝑎𝑖(𝑡)𝑖 ‖

‖𝐹𝑏
𝑚𝑎𝑥‖

} 

Normed base shear 

 

 



Numerical Methods in Civil Engineering, Vol. 2, No. 1, September. 2017 

 

Table 3: Performance criteria for different controllers (3-story building). 

  
Earthquak

e 

El 

centro 

El 

centro 

El 

centro 

Hachinoh

e 

Hachinoh

e 

Hachinoh

e 

Northridg

e 

Northridg

e Kobe Kobe 

averag

e 

  
(intensity

) (0.5) (1) (1.5) (0.5) (1) (1.5) (0.5) (1) (0.5) (1) 
  

 

 

J

1 

 

 

ANFIS 0.390 0.727 0.828 0.304 0.572 0.669 0.585 0.919 
1.05

2 

0.66

4 
0.671 

LQG 0.476 0.675 0.794 0.635 0.798 0.813 0.732 1.145 
0.83

6 

0.65

5 
0.756 

SOFLC 0.805 0.916 0.996 0.648 0.736 0.813 0.600 0.969 
1.05

0 

0.72

4 
0.826 

PON 
0.270 0.479 0.711 0.155 0.221 0.357 0.391 0.750 

0.75

2 

0.60

8 
0.470 

POFF 
0.938 0.961 0.983 0.782 0.986 0.969 0.988 1.027 

0.99

3 

0.90

1 
0.953 

 

 

J

2 

 

 

ANFIS 0.953 0.896 1.030 0.725 0.766 0.929 0.923 1.086 
0.89

9 

0.85

0 
0.906 

LQG 0.644 0.864 1.015 0.696 0.875 0.938 1.074 1.197 
0.93

2 

0.97

6 
0.921 

SOFLC 1.096 1.020 1.033 0.841 0.868 1.115 0.938 1.029 
0.92

4 

0.82

5 
0.969 

PON 
0.652 0.910 1.193 0.721 0.456 0.745 0.818 1.034 

1.11

1 

0.79

0 
0.843 

POFF 
0.966 0.991 1.000 0.886 1.002 0.990 1.008 0.993 

0.93

0 

0.98

0 
0.975 

 

 

J

3 

 

 

ANFIS 0.621 1.133 1.138 0.668 0.900 1.073 0.993 1.044 
1.08

1 

1.01

4 
0.967 

LQG 0.490 0.912 0.944 0.586 0.861 1.027 0.946 1.029 
0.92

2 

1.04

7 
0.876 

SOFLC 1.123 1.273 1.260 0.867 1.150 1.178 1.090 1.149 
1.17

0 

1.17

8 
1.144 

PON 
0.617 0.921 1.113 0.522 0.635 0.864 0.744 1.043 

1.14

5 

1.07

6 
0.868 

POFF 0.980 1.023 0.995 0.806 1.000 0.980 1.004 1.002 0.977 0.999 0.977 

 

 

J

4 

 

 

ANFIS 0.389 0.519 0.566 0.165 0.249 0.571 0.222 0.811 
1.55

6 

0.83

9 
0.589 

LQG 0.485 0.477 0.433 0.342 0.392 0.979 0.286 0.530 
0.60

2 

0.24

4 
0.477 

SOFLC 1.167 0.979 0.702 0.728 0.755 0.758 0.300 1.145 
0.89

2 

0.61

3 
0.804 

PON 
0.184 0.228 0.256 0.118 0.111 0.139 0.071 0.752 

0.54

7 

0.12

2 
0.253 

POFF 
0.897 0.824 1.022 0.807 0.958 1.227 0.975 1.026 

0.68

5 

0.75

2 
0.917 

 

 

J

5 

 

 

ANFIS 0.974 0.835 0.737 0.601 0.590 0.597 0.762 0.751 
0.59

4 

0.67

5 
0.712 

LQG 0.524 0.644 0.650 0.365 0.456 0.537 0.712 0.743 
0.61

9 

0.72

1 
0.597 

SOFLC 1.368 1.248 1.086 0.890 0.973 0.979 1.183 1.120 
0.97

4 

0.97

3 
1.079 

PON 
2.894 1.703 1.250 2.210 1.285 1.046 2.411 1.655 

1.96

5 

1.57

4 
1.799 

POFF 
0.905 0.901 0.909 0.816 0.949 0.960 0.926 0.931 

0.89

1 

0.94

7 
0.914 

 

 
ANFIS 0.613 0.782 0.737 0.342 0.408 0.503 0.739 0.740 

0.63

4 

0.73

5 
0.623 
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J

6 

 

 

LQG 0.489 0.606 0.608 0.351 0.439 0.522 0.671 0.668 
0.56

0 

0.67

5 
0.559 

SOFLC 1.630 1.460 1.242 1.049 1.112 1.108 1.504 1.204 
1.18

7 

1.23

4 
1.273 

PON 
0.920 0.797 0.758 0.641 0.527 0.522 0.915 0.808 

0.77

3 

0.86

9 
0.753 

POFF 
0.905 0.896 0.906 0.818 0.954 0.966 0.941 0.931 

0.88

5 

0.94

2 
0.914 

 
Table 4: Performance criteria for different controllers (76-story building). 

  Floor 1 30 50 55 60 65 70 75 76 

Criteria Controller         

Peak Displacement, 

cm (Percentage  

of Reduction) 

ANFIS 0.04(27.4) 4.94(27.8) 11.83(28.6) 13.80(28.9) 15.82(29.2) 17.90(29.4) 19.99(29.6) 22.16(29.8) 22.65(29.9) 

LQG 0.03(37.2) 4.27(37.6) 10.20(38.5) 11.89(38.7) 13.63(39.0) 15.40(39.2) 17.20(39.5) 19.06(39.7) 19.48(39.7) 

PTMD 0.04 (25.8) 5.05(26.1) 12.10(27.0) 14.11(27.30) 16.18(27.5) 18.31(27.8) 20.45(28.0) 22.68(28.2) 23.18(28.2) 

Peak Acceleration, 

cm/s2(Percentage of  

Reduction) 

ANFIS 0.38(-76.7) 4.19(41.3) 7.74(48.3) 9.09(48.0) 10.24(48.7) 11.49(49.1) 12.48(52.1) 14.02(53.8) 15.83(49.2) 

LQG 0.23(-6.7) 3.25(54.5) 6.50(56.5) 7.70(55.9) 8.93(55.2) 10.06(55.4) 10.62(59.2) 11.54(62.0) 15.86(49.1) 

PTMD 0.21(2.9) 3.80(46.9) 7.72(48.3) 8.84(49.4) 9.90(50.4) 11.3(49.8) 13.00(50.1) 15.12(50.1) 15.25(51.1) 

RMS Displacement, 

cm (Percentage  

of Reduction) 

ANFIS 0.010(37.8) 1.33(38.1) 3.22(38.4) 3.76(38.4) 4.32(38.5) 4.89(38.6) 5.47(38.7) 6.07(38.8) 6.21(38.8) 

LQG 0.01(42.0) 1.24(42.2) 3.00(42.5) 3.50(42.62) 4.02(42.7) 4.56(42.8) 5.10(42.9) 5.66(42.9) 5.78(42.9) 

PTMD 0.01(33.6) 1.43(33.8) 3.44(33.9) 4.03(34.0) 4.63(34.1) 5.25(34.1) 5.87(34.2) 6.52(34.2) 6.66(34.2) 

RMS Acceleration, 

cm/s2 (Percentage  

of Reduction) 

ANFIS 0.06(-6.6) 1.10(45.7) 2.40(49.8) 2.81(49.8) 3.20(50.1) 3.63(50.3) 4.02(50.9) 4.44(51.4) 5.00(46.5) 

LQG 0.06(3.4) 0.90(55.7) 2.03(57.5) 2.41(56.9) 2.79(56.5) 3.14(57.0) 3.36(58.9) 3.35(63.4) 4.66(50.1) 

PTMD 0.06(2.9) 1.19(41.2) 2.68(44.00) 3.12(44.19) 3.55(44.6) 4.05(44.58) 4.54(44.5) 5.14(43.7) 5.23(44.1) 

 

 

 

8. Conclusions 

 

In this paper, ANFIS based inverse model control was 

developed for semi-active control of structure based on 

acceleration feedback. Unlike other methods, this approach 

didn’t require other controllers to generate training data. MR 

dampers were used to provide control forces as semi-active 

devices. To set the command voltage of each damper in 

order to provide the desired force determined by ANFIS 

controller, an NN inverse model of the damper was 

designed. The effectiveness of proposed strategy was 

verified and illustrated using simulated response of a 3-story 

full-scale nonlinear benchmark building excited by various 

earthquake records, and a 76-story full-scale linear 

benchmark building excited by the 500 seconds Davenport 

wind load spectrum. To establish a context for evaluation 

effectiveness of the semi-active control scheme, responses 

to earthquake excitation for 3-story building, were compared 

with two active (LQG and SOFLC) and two passive (passive 

on and passive off) strategies. Moreover, the responses of 

the 76-story building were compared with the active LQG 

and passive TMD (PTMD). 

Table 3 which presented the evaluation criteria as the 

ratio of the controlled response to the uncontrolled response 

for 3-story building showed that the proposed control 

system, ANFIS, significantly reduced normed drift, 

acceleration and base shear and also peak of inter story drift, 

and slightly reduced the peak acceleration and base shear. 

Results also showed that the passive on the system 

performed better than other systems in most criteria, except 

for normed acceleration. Both Passive off and SOFLC 

schemes were poor control systems, especially SOFLC that 

increased normed acceleration and base shear, and peak base 

shear. ANFIS and LQG controllers were between the best 

(passive on) and the worst (passive off and SOFLC) 

controllers. Figure 8 showed that the inverse NN model of 

MR damper could estimate the control voltage very well to 

produce the desired force. Results for 76-story building, 

which were presented in Table 4, showed that the active 

LQG controller reduced responses more than semi-active 

ANFIS, and semi-active ANFIS controller reduced them 

more than PTMD. 
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