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Abstract: 
 

The theory of optimization has improved remarkably during the last four decades. The main 

part of optimizing investigations has been focused on enhancing buckling resistance which 

does not violate the economic feasibility of final design. The finite element analysis which is 

called ESO (Evolutionary Structural Optimization) is presented for optimum (or most ideal) 

design of columns to increase the buckling resistance of structures. To attain the significant 

design variables, this method can be employed to choose an appropriate, affective and 

economical way. During an iterative process, the above approach ensures the attainment of 

global maximum critical load under the imposed equality volume constraint, type of boundary 

conditions and type of cross sections. Precise results and numerical examples have been 

shown and useful diagrams have been developed for the cases of simple, clamped and 

clamped free supported by different types of cross-sectional areas. The model has succeeded 

in arriving at the global optimal column designs possessing the absolute maximum buckling 

load without violating the economic feasibility requirement. As a matter of fact, the cross 

sectional area of column changes whereas, the total volume of column remains constant. As a 

result, the buckling forces increase. According to this study critical buckling load of columns 

decreases by changing the boundary condition from clamped to clamped free and then simply 

supported. 

 

1. Introduction 

 

Optimizing the buckling constraints problems is 

complicated since two factors, namely, analysis and 

eigenvalue solution, have to be considered at each step. 

In this research, many optimization procedures were 

carried out on steel frames [1-2]. By focusing on a single 

column with different boundary conditions and trying to 

enhance the buckling resistance of the column under 

varying situations. 
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The main aim of this investigation is to maximize the 

buckling load to 3 percent higher than the uniform column, 

by redistributing the isotropic column cross sectional area.  

According to research, other scientists have investigated 

optimization of the buckling load by using energy approach 

for continuous structural models or discretized models by 

finite element method [3]. Spillers and valley (1990) 

developed Keller’s classic solution for optimal design of 

columns [4]. The application of ESO (Evolutionary 

Structural Optimization) method on stiffness optimization 

and frequency optimization of plates was presented by Chu 

et al. (1996) and Manickarajah et al.(1995) [5-6].  Xie and 

Steven (1997) applied the ESO method to optimum design 

of buckling resistance of frames; he applied this approach 

with an iterative optimization on planer frames in order to 

avoid buckling under the equality of volume constraint [7]. 
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Ruocco et al. (2016) studied the internal rotational spring 

stiffnesses and developed Hencky bar-chain model for 

buckling analysis of non-uniform column [8]. Godat et al. 

(2012) investigated the stability of local buckling behavior 

of tubular polygon columns under concentric compression 

through experimental tests consisting of six stub columns 

with three different cross-sections [9]. Li et al. (2011) 

investigated the stability of composite columns and 

parameter optimization against buckling [10]. 

The local modification of every element is handled by 

gradually shifting the material from the strongest to the 

weakest part of the structure. A comprehensive discussion 

on the ESO method has been presented in a recent book by 

Xie and Steven (1996) [11].  

Scholars have pursued a precise approach of distinctly 

expressing the optimization problem and defining 

sensitivity numbers based on sensitivity analysis of the 

objective function in most of the recent investigations on 

BESO. For example, one can refer to Huang and Xie 

(2007, 2009, 2010a, b) [12-15], Ghabraie (2009) [16], 

Ghabraie et al. (2010) [17], and Nguyen et al. (2014) [18]. 

To the best knowledge of the author, despite the visible 

similarity between ESO and BESO, no convincible 

mathematical solution has been suggested for ESO.g. and 

the solution by Tanskanen (2002) is not justifiable [19]. 

The nobility of this research is concentrating on the fact 

that it considers the effect of various boundary conditions 

and the number of elements simultaneously with regards to 

column optimization process. 

 

 

2. The Eso Method For Buckling Optimization 

 

ESO method is an iterative method for redistribution of 

column cross-sectional area, through the use of two 

sensitivity numbers, which are calculated for each element 

of a column by using finite element model. 

  The sensitivity numbers are used to assess the effects 

of small changes in thickness of some elements on the 

critical value of the buckling load factor. During the 

optimization process the main task is to raise the critical 

buckling eigenvalue. In applying these changes, the 

structural volume is constrained to remain constant causing 

the higher eigenvalues to decrease simultaneously. 

 To increase the buckling resistance of a column the 

cross sectional area is increased in the elements with the 

greatest sensitivity to a thickness increase and reduced in 

those with the greatest sensitivity to a thickness decrease. 

In applying these changes, the segment volume remains 

constant. This iterative procedure shifts the material 

gradually from the strongest part to the weakest part. 

 

 

 

 

 

3. FEA Analysis 

 

  In order to increase the buckling resistance of a 

column, it is necessary to calculate measures of the 

sensitivity of critical load factor λ to an increase or 

decrease in the variable dimension of an arbitrary finite 

element by redistributing the cross sectional area,. The 

measures are obtained by quantities that are defined as 

sensitivity numbers. The sensitivity numbers are calculated 

from Eq(1): 

 

      0 jgj uKK 
 

(1) 

  The symbols [k], 
gK   , 

j  and  ju  denote the 

global stiffness matrix, the global geometric stiffness 

matrix, the jth eigenvector, respectively. 
The value of critical buckling load is the smallest positive 

eigenvalue 
j  for compression-loaded columns. By 

multiplying Eq. (1) By the transpose of eigenvector ju ; 

i.e. 
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(4) 

  By normalizing the eigenvectors with respect to 

global geometric stiffness matrix such that Eqs. (4) and (5) 

reduces: 

     1jg
T

j uKu
 

(5) 

 

The sensitivity numbers are defined by considering a 

small change in the ith segment dimension. 

 

{ } [ ] [ ]( ){ }
jgj

T

jj uKΔλKΔu=λΔ
 

(6) 

 
The change in the global stiffness matrix [Δk] in 

Eq.(6) is equal to the change in the matrix stiffness of ith 

element. 

If the modification to each element is kept sufficiently 

small, 
gK    can be neglected. In this case, the change 

in the jth element eigenvalue caused by modificating ith 

element stiffness, is given by Manickarajah et al.(1998). 
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(7) 

 
The sensitivity numbers are obtained directly from Eq (4). 

For an increase in dimension of Δt in ith element: 

 

       )()( tKttKKK iiii 


 
(8) 

 
And also, for a reduction in dimension of Δt in ith element: 

       )()( tKttKKK iiii 


 
(9) 

 
Hence, to estimate the effect of dimension changes on the 

critical load factor, the following two sensitivity numbers 

need to be calculated for each element: 

The term for dimension increase: 
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 (10) 

And the other for dimension reduction:   
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i
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(11) 

 

 

4. Optimization Procedure 

 

  An iterative/repetitive procedure is used for resizing 

the cross-section dimension, so that the material is 

gradually shifted from the strongest part of the structure 

to the weakest part. In this method, two parameters that 

are included, resizing ratio of element dimensions and 

steps of this change, are defined before starting the 

process for increasing the accuracy and convergence of 

algorithm, while chosen parameters are usually kept 

constant, throughout  the optimization  process. 

 

 ctevolumesubject

mii


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(12) 

 
The iterative procedure is given as follows: 

 Step1. Determining the geometric and mechanical 

properties and discretizing the column by using a fine 

mesh of finite elements. The mesh should be adequate for 

representing the buckling stress distribution and the 

buckling mode. 

 Step2. Solve the buckling eigenvalue problem and 

corresponding eigenvector. 

 Step3. Calculate the sensitivity numbers  i


 and 

i


for each element. 

 Step4. Increase the dimension of element with the greatest 

value of 
i


and decrease the dimension of the same 

number of elements with the greatest value of 
i


. 

 Step5. Repeat steps 2-4 until the difference between 

critical buckling loads in two successive stages is kept 

constant. 

 

    In general, the accuracy of the optimum solution is 

improved with a smaller resizing ratio of cross-section 

dimension and a smaller step size, but at the expense of 

higher computational costs. It can be pointed out that 

different values of resizing ratio and step size can be used 

at different stages of the optimization process but, in order 

to achieve the accurate design, it would be better to make 

these parameters smaller at final stages or keep them 

constant. 

 

 

5. Numerical Examples 

 

  In this section three examples of column with different 

type of cross-section and variety of boundary conditions 

are presented. All of these cases have 10 elements. 10% of 

the elements are subjected to resizing by 0.5cm step size at 

each iteration. In fact, before optimisation, the cross section 

of all elements was considered uniform and it changes 

during optimization procedure. 

The optimum designs for simply supported column with 

rectangular cross-section (4×5cm) and length of 400cm are 

shown in Figures 1 and 2. 

 

 

 

 
 

Fig.1: Optimum shapes of simply supported column. 
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Fig.2: Optimization histories of simply supported column. 

 

According to figures 1 and 2, 100 iteration is needed for 

achieving to desired shape. In optimal geometry, the width 

of cross section in middle elements increases to maximum 

5 cm while it decreases to 2.5 cm in two end elements. 

The next case is for clamped column with circular cross-

section (r =2.5cm) and length of 400cm which is shown in 

Figures 3 and 4. Here again radius of cross section changes 

for different element during 40 optimization cycles. These 

changes vary from 2 cm to maximum 3 cm in different 

elements. Finally, the clamped free column with IPE cross 

section (h=160 mm) and length of 400cm is shown in 

Figures 5 and 6.  

 

 
 

Fig.3: Optimum shapes of clamped column. 

. 

 
Fig.4: Optimization histories of clamped column. 
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Fig.5: Optimum shapes of clamped free column. 

 

 
 

Fig.6: Optimization histories of clamped column. 

 

 

 

 

Table.1: Pcr for the circular cross-section and simply supported column ( R=2.5 cm,  A=20 cm2) 
 

Pcr 

 

Number of 

iterations 
unf




,N=40 

 

Pcr 

(kg/cm^2) 

 

Number of 

iteration 
unf




,N=10 

 

Step 

size 

 

Resizing 

ratio 

5.6639e3 23 1.4252 5.3640e3 11 1.3497 0.2 10% 

5.5418e3 10 1.3944 4.9593e3 4 1.2479 0.5 10% 

5.6359e3 9 1.4233 5.2969e3 7 1.3368 0.2 50% 

5.4412e3 6 1.3691 4.7676e3 5 1.2036 0.5 50% 

 

Table.2: Pcr for IPE cross-section and simply supported column (  A=20 cm2  , IPE160) 
 

Pcr 
 

Number of 

iterations 
unf




,N=40 

 

Pcr 

(kg/cm^2) 

 
Number of 

iteration 
unf




,N=10 

 
Step size 

 
Resizing 

ratio 

5.0226e3 170 1.3916 4.7904e5 77 1.3213 0.2 10% 

5.0483e3 73 1.3912 4.7831e5 31 1.3193 0.5 10% 

5.0469e3 55 1.3928 4.7939e5 34 1.3222 0.2 50% 

5.0433e3 23 1.3911 4.7815e5 17 1.3210 0.5 50% 

 

Table.3: Pcr for the circular cross-section and clamped supported column ( R=2.5 cm,  A=20 cm2) 
 

Pcr 
 

Number of 

iterations 
unf




,N=40 

 

Pcr 

(kg/cm^2) 

 
Number of 

iteration 
unf




,N=10 

 
Step size 

 
Resizing 

ratio 

2.0882e4 21 1.3253 2.0664e4 11 1.3251 0.2 10% 

2.0128e4 23 1.2662 1.9349e4 4 1.2360 0.5 10% 

2.0719e4 6 1.3155 1.9507e4 5 1.2487 0.2 50% 

1.7871e4 15 1.2339 1.7954e4 7 1.1292 0.5 50% 

 

Table.4: Pcr for IPE cross-section and clamped supported column (  A=20 cm2  , IPE160) 
 

Pcr 

 

Number of 
iterations 

unf




,N=40 

 

Pcr 

(kg/cm^2) 

 

Number of 
iteration 

unf




,N=10 

 

Step size 

 

Resizing 
ratio 

1.9246e6 123 1.3270 1.8823e6 66 1.2973 0.2 10% 

1.9215e6 46 1.3250 1.8811e6 24 1.2937 0.5 10% 

1.9765e6 44 1.3629 1.8813e6 32 1.2970 0.2 50% 

1.9567e6 19 1.3492 1.8742e6 13 1.2921 0.5 50% 

 

Table.5: Pcr for the circular cross-section and clamped free supported column ( R=2.5 cm,  A=20 cm2) 
 

Pcr 

 

Number of 

iterations 
unf




,N=40 

 

Pcr 

(kg/cm^2) 

 

Number of 

iteration 
unf




,N=10 

 

Step size 

 

Resizing 

ratio 

1.1740e4 27 1.4440 1.0559e4 11 1.2987 0.2 10% 

1.0683e4 9 1.3140 9.8802e3 4 1.2270 0.5 10% 

1.1479e4 11 1.4119 1.0605e4 9 1.3043 0.2 50% 

1.0137e4 6 1.2840 1.0194e4 2 1.2583 0.5 50% 
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Table.6: Pcr for IPE cross-section and clamped free supported column (  A=20 cm2  , IPE160) 
 

Pcr 
 

Number of 

iterations 
unf




,N=40 

 

Pcr 

(kg/cm^2) 

 
Number of 

iteration 
unf




,N=10 

 
Step size 

 
Resizing 

ratio 

1.0425e6 181 1.4055 9.7209e5 82 1.3106 0.2 10% 

1.0408e6 71 1.4027 9.7103e5 33 1.3091 0.5 10% 

1.0427e6 61 1.4059 9.7193e5 41 1.3104 0.2 50% 

1.0397e6 36 1.4025 9.7065e5 17 1.3086 0.5 50% 

 

 

6. Results 

 

  In this section all of the charts are provided for columns 

with circular and IPE cross-section under three different 

boundary conditions which are simply, clamped and 

clamped free supported. In all of the cases the length of 

column 400cm and Youngʼs modulus E=2.1e6 cm 2

kg

 are 
assumed (Tables 1-6). 

 

According to presented charts, the following results are 

obtained: 

 By increasing the number of elements, the critical 

buckling load increases. 

 By decreasing the resizing ratio (the percentage of 

resized elements of total number), the critical 

buckling load increases. 

 By reduction of the step size, the optimum critical 

load increases. 

According to the Figures 7 and 8, the critical buckling load 

of the circular cross-section column can be decreased by 

changing the boundary condition from clamped to clamped 

free and then simply supported. On the other hand, it can 

be increased by applying same boundary conditions 

respectively as mentioned above. Therefore, this method 

presents the greatest value of  

unf




 for simply supported 

column. 

 

 
Fig.7: Iteration histories of critical buckling load for circular 

cross-section column with different boundary condition. 

 

 
 

Fig.8: Iteration histories of  circular cross-section column with 

different boundary condition. 

 

According to Figures 9 and 10, the critical buckling load 

of IPE section column decreases by changing the boundary 

condition from clamped to clamped free and then simply 

supported. This method presents the greatest value of  

unf




for clamped free column. 

 
 

Fig.9: Iteration histories of critical buckling load for IPE cross-

section column with different boundary condition. 
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Fig.10: Iteration histories of for IPE cross-section column with 

different boundary condition. 

 

7. Conclusion 

 

 The paper's aim is about applying ESO method as a 

way to optimize buckling forces in elastic column. In this 

procedure, the cross sectional area of column changes 

while the total volume of column remains constant. This 

change transforms the buckling modes, which in turn 

increase the buckling forces that depends directly on the 

number of elements in the column. According to this study 

critical buckling load of columns decrease by changing the 

boundary condition from clamped to clamped free and then 

simply supported. The critical buckling load of the circular 

cross-section column decreases by changing the boundary 

condition from clamped to clamped free and then simply 

supported, but increases by applying respectively the same 

boundary conditions as mentioned above. Therefore, this 

method presents the greatest value of  

unf




 

for simply 

supported column.  The results obtained in this study are 

verified by series of theoretical relationships which serve at 

some level, to the verification of the results. 
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