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Abstract: 
 

Previous research on bracing members show that the ductility of bracing members is 

compromised due to the buckling phenomena. Therefore, many researchers have tried to use 

special considerations to increase the fracture life of bracing members. Some of these 

recommendations such as increasing the slenderness ratio, using lower width to thickness ratio, 

increasing the out-of-plane stiffness of middle connection to increase the fracture life of the 

bracing members can be used in seismic upgrading of bracing members. In this paper, the 

buckling behavior of a special type of concentrically braced frame termed as yielding damped 

braced core is investigated for different percentage of central core. Empirical studies shows 

that separation of X-braces by central frame, influence the buckling behavior of the system and 

leads to occurrence of buckling in second mode shape in accordance with two half-sine wave. 

The theoretical studies shows that the buckling strength of the system increases in proportion 

to increase in central core rigidity. Using more flexible central core, results in increase the 

possibility of instability and vice versa. Hence, to enhance the buckling behavior of the system, 

it is strongly recommended to use a central core with proper rigidity 

.

D 

1. Introduction 

Over the past few decades, buckling is known as an 

instability phenomenon that has a highly destructive effect 

on the seismic performance of structures. The ductility of 

bracing members is limited because of the buckling of its 

diagonal members. Therfore, many researchers have studied 

the buckling behavior of the concentrically braced frame to 

increase the fracture life of braces as a function of width to 

thickness ratio of their cross section, type of end conditions 

and slenderness ratio. Dewolf & Pelliccione (1979)[1], El-

Tayem & Goel (1986)[2], Kitipornchai & Finch (1986)[3], 

Stoman (1988 & 1989)[4,5] and Wang & Boresi (1992)[6] 

investigate the buckling behavior of the concentrically 

braced frames using a gusset plate to connect braces at their 

intersection. 
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These studies demonstrate that due to insignificant out-of-

plane stiffness of a gusset plate, such connections tend to 

behave as simple connections. Dewolf and Pellicione shows 

that the effective length factor is sensitive to the end 

conditions of braces[1]. Also, Segal et al. (1994) evaluate 

the buckling capacity of the X-braced frame by changing the 

thickness of its end connections[7]. Davaran (2001)[8] 

concludes that by increasing the out-of-plane stiffness of 

middle connection via cutting one of the angles at the 

intersection of braces in double angle sections, the buckling 

strength of the braces can be improved. Moon et al (2007)[9] 

investigate the effects of middle connection type on the 

effective length factor of the concentrically braced frames. 

They propose a formulation that approximates the critical 

buckling load of concentrically braced frames using 

discontinuous diagonal members. Tremblay (2003)[10] 

concludes that even for bracing members with compact 

sections, local buckling is more significant in braces with 

lower slenderness ratio.  
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The negative effect of buckling on energy absorption of 

the system is investigated by Sabouri-Ghomi & Ebadi (2005 

& 2006)[11,12]. For their empirical studies [13, 14], they 

use a connection of special types of concentrically braced 

frame termed as Yielding Damped Braced Core 

(YDBC)[15]. They conclude that the middle connection is 

one of the most important factors that influence the buckling 

capacity of the concentrically braced frame. Their 

investigations indicate that the propagation of large 

compressive strains at middle length of the concentrically 

braced frame can significantly decrease lifespan of the 

structure. 

In this paper, the buckling behavior of bracing members 

in which the braces are separated by a central core is 

investigated. In this investigation, the out-of-plane effective 

length factor of the system for different central core 

percentage is obtained based on two half-sine wave attained 

from empirical studies of Sabouri-Ghomi & Ebadi[13,14]. 

The theoretical studies shows that the buckling strength of 

the system increases in proportion to central core rigidity. 

Depending on the central core percentage and ratio of 

moment of inertia of the central core to X-braces, the out-of-

plane effective length factor of system is varied between 0.2 

to 0.9 of its actual length. Using a more rigid central core 

than the X-braces, results in an increase in the buckling 

strength of the system. Therefore, it is strongly 

recommended to use a rigid central core to enhance the 

buckling performance of X-braces. 

 

2. Theoretical Study of Out-of-Plane Buckling 

Strength 

In order to calculate the out-of-plane buckling strength 

of yielding damped braced core, the analysis is formulated 

according to the deformed configuration of the braces. The 

deformed configuration is considered as the two half-sine 

wave based on previous empirical studies (Fig.1). Therefore, 

the effective length factor is considered based on equation 1. 
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Fig. 1: X-braced frame; (a) Buckling in accordance with two half-

sine wave [13]; (b) Generation of global and local buckling [13]; 

(c) Buckling in accordance with two half-sine wave [16] 

Where z is longitudinal axis and x, y are principle axes, 

A is constant that is determined from the boundary 

conditions and a, is the total length of bracing member. A 

free body diagram of compression member is illustrated in 

Fig.2. As shown in this figure, the positive axial load deals 

with tension braces. The out-of-plane buckling strength of 

the YDBC system can be found by equalizing internal 

energy and external energy of the system. The internal 

energy is calculated in accordance with equation 2. 
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Where E is the modulus of elasticity, I is the moment of 

inertia, y’’ is the second derivative of the deflected shape, n 

is the ratio of central core to the main frame, Ix(x-x) is the out-

of-plane moment of inertia of X-braces and Icc is the out-of-

plane moment of inertia of central core normal to its 

longitudinal axis. As can be seen in Fig.2, the out-of-plane 

stiffness of tension braces is neglected in order to have a 

lower limit of critical buckling strength.

 
Fig.2: Free body diagram of YDBC system 

 

The external energy of the system is calculated based on 

equation 3. 
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In which y’ is the derivative of the deflected shape. By 

setting equations 2, and 3 equal to each other, the buckling 

strength of the system is obtained according to equation 4. 

(4) 
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If =Icc/Ix(x-x) and the out-of-plane buckling strength of 

the system is considered to be equal to the buckling strength 

of the concentrically brace frame(𝐹𝑐𝑟(𝑥−𝑥) =
𝜋2𝐸𝐼𝑥(𝑥−𝑥)

(𝑘𝑎)2
) , 

the effective length factor can be calculated based on 

equation 5. 
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Fig.3: Effective length factor for different ratio of central core to 

the main frame 

 

As can be seen in Fig.3: 

• For =1, all-system with different dimensions of 

central core have the same out-of-plane effective 

length factor (k=0.5), because the moment of inertia 

of member along its length is constant and the system 

acts as a concentrically braced frame. 

• In concentrically brace frame (n=0), the effective 

length factor is constant and is equal to 0.5. When the 

out-of-plane moment of inertia of central core normal 

to its longitudinal axis is considered equal to out-of-

plane moment of inertia of X-braces, the effective 

length factor is constant (k=0.5) and is independent 

from the dimensions of central core to the main 

frame.   

• When the out-of-plane stiffness of the central core is 

considered lower than the out-of-plane stiffness of X-

braces, the system is exposed to instability and the 

buckling strength of the system decreases rapidly, 

and vice versa. For  less than 1, the effective length 

factor varied between 0.5 and 0.8 whereas, for  

between 1 and 10, the effective length factor varied 

between 0.2 and 0.5.  

• The buckling strength of the system increases in 

compatibility with increase in the ratio of central core 

to the main frame.  

 

3. Theoretical Study of In-Plane Buckling Strength  

 

To calculate the in-plane buckling strength of the 

yielding damped braced core, the internal force distribution 

should be determined first. The internal force distribution of 

bracing member is calculated using the classic slope-

deflection method besides considering symmetric conditions 

(Fig.4). Some of the assumptions made during this process 

are: 

• The bending moment induced by the applied load in 

X-braces is neglected due to its negligible effects. 

• In beam and columns, only the axial force induced by 

the applied load is considered. 

• The self weight of the members of frame is neglected. 

It is worth mentioning that for its simplicity the use of steel 

plate at the central core is eliminated. 

 

 



35 

 

Fig.4: Internal force distribution of YDBF 

 

By using slope-deflection method, the internal forces 

distribution of the central frame is determined as 

(6) 
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The internal moments of the central frame (Equation 6) can 

be determined by applying the slope-deflection equation and 

decomposition the frame into symmetric and anti-

symmetric parts as shown in Fig.4. 

Then, by applying moment equilibrium equation on each 

element of the central frame, the members shear force can 

be calculated as in Equations.7, 8.   

As can be seen, there isn't any induced axial force in the 

central frame and hence, buckling of the central frame is not 

a matter of concern for the designer. As a consequence, the 

in-plane effective length factor of X-brace can be 

determined based on their actual length and end support 

conditions. The in-plane buckling strength of X-braces is 

calculated in accordance with equation 10 and regarding the 

boundary conditions of columns with pinned-fixed ends.  

(10) 
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Ix(y-y) is the in-plane moment of inertia of X-braces and lx is 

the actual length of X-braces. The in-plane effective length 

factor is calculated similarly to the out-of-plane effective 

length factor and equalizing equation 10 to buckling strength 

of the concentrically braced frame.  

(11) 
 

0.35(1 )k n   

The coefficient of  versus effective length factor of both 

principle axis are illustrated in Fig.5. 

 

  

 

 

Fig.5: Effective length factor of YDBC system 
 

As can be seen in this figure: 

• The out-of-plane effective length factor is more 

than the in-plane effective length factor for a more common 

 coefficient. Therefore, the out-of-plane buckling load of 

the system is almost always smaller than the in-plane 

buckling load of the system, as expected. 

• For  greater than 1, the buckling strength of 

YDBC system is considered more than the critical buckling 

strength of the concentrically braced frame and the system 

would behave in a more stable manner.  

• The buckling strength of the system can be directly 

calculated from equations 4 and 10 or by using graphs, 

which is defined in Fig.5. 

It is noteworthy to mention that, both the buckling out-of-

plane and in-plane formulas presented in this paper is the 

general formula that can be used for buckling calculation of 

all three systems namely; YDBF system, YDBC system and 

X-shaped DBS systems. The difference is that the moment 

of inertia of each part should be selected in accordance with 

the relevant part.   
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4. Experimental Verification and Results 

 

In this section, the results of experimental work that was 

carried out initially by Sabouri and Ebadi [13] are used to 

verify the analytical method. Some important mechanical 

properties that were used in the test is defined in Table 1.  

 

Table.1: Mechanical properties of tested specimen [13] 

Member Cross 

Section  

Yield 

Stress 

(kN/mm2) 

E 

(kN/mm2) 

Diagonal Braces 2U50x27x4 372.65 210 

Columns 
Flanges 

HEB-120 
262 210 

Web 338.5 210 

 

 

Fig.6: Dimensions of half-scale test specimens 

 

Dimensions of half-scale test specimen is illustrated in Fig.6. 

Applied Technology Council ATC-24 loading protocol was 

used for investigation of system’s seismic performance [17]. 

Test results shows that plastic hinges were formed at the 

middle length of each X-braces when they were subjected to 

compression. At about 1.1% drift, necking developed 

through the plastic hinges area, brittle fracture occurred at 

one of the diagonals and the brace lost its ability to resist 

further forces. Subsequently, as expected, the load bearing 

capacity of the system dropped considerably and the frame 

by itself withstood cyclic loading to approximately 3.8% 

drift. The distribution of these events is shown in Fig.7. 

. 

 

Fig.7: Force-displacement curve of half-scale test specimens 

 

According to this figure, the lateral load bearing capacity of 

the system and frame is 450kN and 175kN respectively. 

Therefore, the buckling strength of the system derived is 

275kN, which is equal to the load bearing capacity of each 

brace multiplied by the cosine of angle (Fig.8). Thus, based 

on tension strength of X-braces, the buckling strength of the 

X-brace obtained is equal to 128.9. But since the buckling 

strength of the X-braces according to equation 4 is 

approximately equal to 1305.4kN, which is much greater 

than the yield strength of the system, it can be concluded that 

the buckling occurred in an in-elastic range and the buckling 

strength of the system dropped rapidly due to stiffness losses 

in the system shortly afterward. Based on equation 5, the 

out-of-plane effective length factor of the system is equal to 

0.34. As can be seen, due to in-elastic buckling behavior of 

braces, this test is not a very good example for validation of 

elastic buckling strength of braces, but it can be helpful in 

the absence of other experiments in this area.  

 

Fig.8: Lateral load bearing capacity of X-braces 

 

5. Conclusions 

 

The following conclusions can be derived: 

• Due to the fact that, in YDBC system, the energy 

absorbed by the central core and the coefficient  is 

almost always less than 8, it can be concluded that the 
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buckling capacity of the system is almost always 

governed by the out-of-plane buckling strength. As a 

results, using a more rigid central core, could enhance 

the buckling behavior of system and help the system 

to behave in a more stable manner.   

• The buckling strength of the system is highly 

dependent on the initial deformation of the system. 

For two half-sine wave, all-systems intersect each 

other at k while for one half-sine wave this 

convergence occurs at k=1.0.  

• The out-of-plane buckling capacity of the system 

decreases correspondingly to  increment while the 

in-plane buckling capacity of the system is 

independent from this coefficient. By using proposed 

formula, the buckling capacity of all three systems; 

YDBF system, YDBC system and DBS system can 

be calculated easily and thus the seismic performance 

of braces during an earthquake can be predicted in a 

very close manner.  
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