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Abstract: 
 

In this paper, the finite difference method (FDM) is applied to investigate the stability analysis 

and buckling load of columns with variable flexural rigidity, different boundary conditions 

and subjected to variable axial loads. Between various mathematical techniques adopted to 

solve the equilibrium equation, the finite difference method, especially in its explicit 

formulation, requires a minimum of computing stages. This numerical method is therefore one 

of the most suitable and fast approaches for engineering applications where the exact solution 

is very difficult to obtain. The main idea of this method is to replace all the derivatives 

presented in the governing equilibrium equation and boundary condition equations with the 

corresponding forward, central and backward second order finite difference expressions. The 

critical buckling loads are finally determined by solving the eigenvalue problem of the 

obtained algebraic system resulting from FDM expansions. In order to illustrate the 

correctness and performance of FDM, several numerical examples are presented. The results 

are compared with finite element results using Ansys software and other available numerical 

and analytical solutions. The competency and efficiency of the method is then declared. 

D 

1. Introduction 

Stability analysis of structural members such as beams and 

columns is a criteria factor in the design of different 

constructions. Therefore, the accurate calculation of the 

critical buckling loads and buckling modes of elastic 

members could help engineers to produce structures with 

satisfactory stability. There are a large number of 

researches devoted to the linear stability analysis of 

columns with constant cross-section. For non-prismatic 

beams subjected to axial forces, the stability analysis 

becomes more complicated due to the presence of variable 

coefficients in the governing fourth order differential 

equation. Regarding this, there are not any general closed-

form solutions for exact estimation of buckling loads of 

non-prismatic beams; hence application of different 

numerical techniques have been carried out by researchers.  
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Elastic members whose cross-sectional profile changes 

smoothly through their longitudinal direction, known as 

non-prismatic members, are widely spread in a variety of 

engineering applications due to their conspicuous 

characteristics such as satisfaction aesthetic necessities and 

optimal distribution of weight. 

The first investigation in this field was presented by 

Euler. He calculated the critical buckling load of columns 

under their own weight. Dinnik, Karman and Biot offered 

closed-form solutions for the equilibrium differential 

equations [1, 2]. On the other hand, Timoshenko derived 

the governing equilibrium equations and their closed-form 

solutions for various types of flexural members under 

different circumstances [3]. The exact solution for special 

types of tapered columns was proposed by Gere and Carter 

for the first time [4]. Frisch-Fay achieved critical buckling 

loads of prismatic elements by using analytical solution. 

The elements were surveyed with various boundary 

conditions and subjected to uniform axial force. He 

acquired the critical buckling load for a uniform strut that 

was excluded from sway at top and bottom by introducing 

two Bessel integrals and one multiple Bessel integral [5]. 

Ermopulos estimated the critical loads and the 
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corresponding equivalent buckling lengths of frame with 

non-uniform members based on slope deflection method 

[6]. FDM was applied by Iromenger to determine critical 

buckling load of tapered and stepped columns [7] whereas 

Smith adopted the energy method and symbolic analysis 

for evaluating buckling loads of the tapered columns [8]. 

Arbabi and Li presented a semi analytical approach for 

measuring buckling load of columns with step-varying 

profiles [9]. While Siginer studied the problem of buckling 

of tapered columns with linear variation of flexural rigidity 

[10], Sampaio and Hundhausen presented a mathematical 

model and analytical solution for buckling of inclined 

beam-columns. Overall, only one type of boundary 

condition (pinned-ends) was analyzed based on their 

methods and its exact solution was shown [11]. Wang et al. 

illustrated closed-form solutions for stability analysis of 

columns, beams, arches, rings, plates and shells [12]. Li et 

al. investigated the stability analysis of bars with non-

constant cross-sections. They calculated the eigenvalue of 

multi-step bars subjected to simple and complicated loads 

using Bessel’s functions [13, 14, 15]. Rahai and Kazemi 

formulated a new approach for the linear stability problem 

of tapered column members. The exact buckling load was 

calculated by combination of modified vibrational mode 

shape (MVM) and energy method [16]. Coşkun and Atay 

used variational iteration method to determine the critical 

buckling load of elastic columns with variable cross-

sections [17]. Huang and Luo proposed a new and simple 

procedure to compute the critical buckling loads of beams 

with various boundary conditions subjected to arbitrarily 

axial in-homogeneity [18]. Okay et al. derived buckling 

loads and mode shapes of a heavy column by applying the 

variational iteration method [19]. Atay and Coşkun 

analyzed elastic stability of Euler columns with continuous 

restraint using variational iteration method (VIM) [20]. 

Atay applied a new approach, known as Homotopy 

perturbation method, to solve the buckling problem of non-

prismatic columns [21]. Pinarbasi computed lateral-

torsional buckling load of non-uniform rectangular beams 

by using homotopy perturbation method (HPM) [22]. Some 

researches applied the power series method to investigate 

stability behavior of different types of columns. In this 

method, displacements and other variable parameters such 

as flexural rigidity, axial load are approximated by 

polynomial functions. In order to achieve the exact result, 

the polynomial order must be increased. Eisenberger used 

this method to study stability and free vibration behaviors 

of a beam resting on variable two-parameter elastic 

foundations [23, 24]. Al- Sadder used this approach to 

solve the fourth-order ordinary differential stability 

equation of a non-prismatic beam-columns under uniform 

tensile or compressive axial force [25]. This method was 

then adopted by Asgarian et al. to investigate the lateral 

instability of tapered thin-walled beams with arbitrary 

cross-sections [26]. 
The abovementioned researchers investigated the 

problem of buckling only for special types of columns. 

Tapered and stepped columns and members with linear, 

quadratic and cubic variation of flexural rigidity were the 

most common forms of columns studied by many 

researches. The main purpose of this paper is calculating 

the critical buckling loads for any type of columns with 

variable cross-sections such as: linear, polynomial and 

exponential variation of flexural rigidity under variable 

axial load based on the finite difference method with 

second order accuracy. In the first stage, fourth-order 

governing stability differential equation of a non-prismatic 

column under variable axial load is formulated and the 

related boundary conditions are then expressed. In the 

second stage, the equilibrium equation and boundary 

conditions are discretized by relating forward, central and 

backward finite difference formulations. In this regard, the 

expressions of derivatives of displacement represented in 

the stability equation are presented based on 

aforementioned numerical method. Finally, the system of 

finite difference equations culminates in a set of 

simultaneous and linear equations and the elastic critical 

buckling loads are calculated by solving an eigenvalue 

problem of the obtained algebraic system. 

In order to demonstrate the accuracy and efficiency of this 

method to determine critical buckling loads of various 

types of non-prismatic columns, several numerical 

examples are carried out. Different representative load 

cases and various boundary conditions are considered. The 

obtained results are compared to finite element simulations 

using Ansys software and to other available numerical and 

analytical benchmarks. The stability analysis of uniform 

members as well as non-uniform ones can be done through 

the present method. Comments and conclusions are close to 

last section of the present paper. 

 

2. Formulation of Equilibrium Equations  

 

A non-prismatic beam with the length of L as depicted 

in Fig.1 is taken into account. In this study, Euler-Bernoulli 

beam theory for stability analysis of beam with variable cross-

sections is adopted. Regarding this theory, the effect of 

flexural deformation is taken into account while the 

influences of shear deformation and rotatory inertia are 

negligible. The differential equilibrium equation for non-

uniform column subjected to variable axial load can be 

expressed as follows: 
2 2

2 2
( ) ( ) 0

d y d w d dw
EI x P x

dx dxdx dx

   
    

                                  

(1) 

 

        

 
Fig. 1: Non-prismatic column subjected to variable axial force 

        

                                                                 

Extending the above equation can be obtained as: 
4 3 2 2

4 3 2 2

( ) ( )
( ). 2 ( ) .

( )
0

d w dEI x d w d EI x d w
EI x P x

dxdx dx dx dx

dP x dw

dx dx

 
    

 

  
     

  (2)        

In the last formulation, E and w express Young's modulus 

of elasticity and vertical displacement, respectively. I and 
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P denote respectively the second moment of area and static 

axial load which can be both arbitrary over the beam’s 

length (x-axis).  

Considering Fig. 2, two degrees of freedom exist at each 

node of elements in plane bending; vertical displacement in 

y direction ( 1 2,  ) and rotation about z-axis ( 1 2,  ). 

Therefore, for each end of a column depending on its 

condition, two boundary conditions can be considered as: 

Pinned support:       0w        and        
2

2
0

d w

dx
         (3)                                                                                                 

Clamped support:    0w        and        0
dw

dx
          (4)                                                                                                  

Free end:    
2

2
0

d w

dx
     and    

3

3
0

d w P dw

EI dxdx
         (5)                                                                                                  

 
 

Fig. 2: Degrees of freedom for a column element 

 

 

3. FDM Formulation of the Problem  

 

The finite difference method is supposed to be a 

dominant numerical technique to solve differential 

equations with generalized end conditions. The Finite 

difference approach is a numerical iterative procedure that 

involves the use of successive approximation to obtain 

solutions of differential equations especially with variable 

coefficients. This numerical method is based on replacing 

each term of derivatives presented in the differential 

equation and its related boundary conditions with the finite 

difference formulations. The basis of this method is to 

approximate the function of derivatives with Taylor series 

expansions. 

In order to apply the finite difference method to the 

equilibrium equation (1), the column member with length 

of L is assumed to be sub-divided into n parts, each of 

which equals to the length /h L n , as shown in Fig. 3. 

Therefore, there are n+1 nodes along the column’s length, 

whose numbering starts with 0 at the left end finishes at n 

on the other side.  

 
Fig. 3: equally spaced grid point along the column’s length in the 

finite difference method 

 

According to the central finite difference method and in 

the presence of first to fourth order derivatives of vertical 

displacement of the considered element (2), derivatives of 

displacement for a discrete member are formulated as: 

2

i h i hw wdw

dx h

 
                                                          (7)                                                                                                                                                

2

2 2

2i h i i hw w wd w

dx h

  
                                      (8)                                                                                                                            

3
2 2

3 3

2 2

2

i h i h i h i hw w w wd w

dx h

     
           (9)                                                                                                              

4
2 2

4 4

4 6 4i h i h i i h i hw w w w wd w

dx h

      
            (10)                                                                                                  

In which:

 
2i hw  are  2i hw  and  i hw  ، iw ، i hw  ،

vertical displacement of considered member in five points, 

located at equal distances from h. By substituting relations 

(7) to (10) in equation (2), and simplification, the 

governing differential equation in finite difference form at 

node i, can be expressed as follows: 

2

2
2

2

2 3

2
2 2

2

2
2

2

2 3

( )
( )

( ) ( )
4 (x) 2h

( )
          (x) 0.5h

( )
6 (x) 2 2 (x)

( ) ( )
4 (x) 2h

             (x) 0.5h

i h

i h

i

i h

dEI x
w EI x h

dx

dEI x d EI x
w EI h

dx dx

dP x
h P

dx

d EI x
w EI h h P

dx

dEI x d EI x
w EI h

dx dx

h P







 
 

 


   




  



 
   

 


   



 

2

( )

( )
( ) 0i h

dP x

dx

dEI x
w EI x h

dx






 
   

 

             (14)                   

Furthermore, introducing five new parameters: 

( )
( ) ( )

dEI x
A x EI x h

dx
                       (15)                                                                 

2
2

2

2 3

( ) ( )
(x) 4 (x) 2h

( )
           (x) 0.5h

dEI x d EI x
B EI h

dx dx

dP x
h P

dx

   

 

              (16)                                                             

2
2 2

2

( )
( ) 6 (x) 2 2 (x)

d EI x
C x EI h h P

dx
                    (17)                                                                                                 

2
2

2

2 3

( ) ( )
D(x) 4 (x) 2h

( )
             (x) 0.5h

dEI x d EI x
EI h

dx dx

dP x
h P

dx

   

 

              (18)                                                            

( )
E(x) ( )

dEI x
EI x h

dx
                        (20)                                                                                                                               

And substituting Eq. (15)-(20) into Eq. (14), the following 

expression is found:  
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     

   
2

2

( ) B( ) ( )

( ) ( ) 0

i h i h i

i h i h

w A x ih w x ih w C x ih

w D x ih w E x ih

 

 

    

    
(21)                                                    

Equation (21) should be written for n-1 grid points of a 

divided element; thus, n-1 equations are derived including 

n-1 unknown parameters ( 1 0 1 1, , ,...., ,n nw w w w w  ). In 

order to solve the system of equation obtained based on 

the finite difference method, four extra equations 

eventuated from boundary conditions of the column are 

required. According to forward and backward finite 

difference formulations with second order accuracy, the 

introduced boundary conditions in Eqs. (3) to (5) can be 

respectively modified for the first and final points of 

divisions (i=0 and i=n) as follows: 

 

Pinned support:      

                            

0

0 1 2 3

1 1 3

0
0      

2 5 4 0

0
      

2 5 4 0

n

n n n n

w
i

w w w w

w
i n

w w w w  


  

   


  

   

                 (22)                                                 

Clamped support:  

  

0

0 1 2

1 2

0
0      

3 4 0

0
      

3 4 0

n

n n n

w
i

w w w

w
i n

w w w 


  

   


  

  

                            (23)                                                                  

Free end:  

  

0 1 2 3

2 2
0 1

2
2 3 4

1 1 3

2 2
1

2 5 4 0

( 0) ( 0)
0 ( 2.5 1.5 ) (9 2 )

( 0) ( 0)

( 0)
( 12 0.5 ) 7 1.5 0

( 0)

2 5 4 0

( ) ( )
(2.5 1.5 ) (9 2 )

( ) ( )

(12 0

n n n n

n n

w w w w

P x P x
i h w h w

EI x EI x

P x
h w w w

EI x

w w w w

P x L P x L
i n h w h w

EI x L EI x L

  






   

  

     
 

 
     



   

 
    

 

 2
2 3 4

( )
.5 ) 7 1.5 0

( )
n n n

P x L
h w w w

EI x L
  







 

  


   

(24) 

Therefore, finite difference approach in the presence of 

n equal segments along column member, constitutes a 

system of simultaneous equations consisting n+3 linear 

equations.  

In the following, the simplified equilibrium equation 

through FD formulation is written for each grid point 

without considering the corresponding equations of 

boundary conditions: 

3 2

1 0 1

1 1
1 : ( ) B( )

1 1 1
      ( ) ( ) ( ) 0

L L
i w A x w x

n n

L L L
w C x w D x w E x

n n n


 
   

  
      

   
      

     
          

 

4 3

2 1 0

2 2
2  : ( ) B( )

2 2 2
      ( ) ( ) ( ) 0

L L
i w A x w x

n n

L L L
w C x w D x w E x

n n n

 
   

  
      

   
      

     
          

 

5 4

3 2

1

1

1

3 3
3  : ( ) B( )

3 3
            ( ) ( )

3
( ) 0

.

.

.

1 1
1 : ( ) B( )

1
            ( )

            

n n

n

L L
i w A x w x

n n

L L
w C x w D x

n n

L
w E x

n

n L n L
i n w A x w x

n n

n L
w C x

n





 
   

 
   


  

   
    

 
 

   
      

   
      

 
  

   
      

2

3

1
( )

1
( ) 0             

n

n

n L
w D x

n

n L
w E x

n





 
 

 
  

   
      

 
  

       (25)   

The final equation is obtained in a matrix notation as 

follows: 

     
3 1 3 13 3

0
n nn n

A w
     

                                             (26)                                                                                                              

Where the expansion of coefficient matrix  A  and 

displacement vector w are: 

 

1

0

1

2

1

1

.

.

.

n

n

n

w

w

w

w

w

w

w

w







 
 
 
 
 
 
  

  
 
 
 
 
 
 
  

                                                     (27a)  
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 

0 0 0 . . . . 0 0

0 0 0 . . . . 0 0

( ) ( ) ( ) ( ) ( ) 0 0 0 0 . . . 0 0

0 (x 2 ) (x 2 ) (x 2 ) (x 2 ) (x 2 ) 0 0 0 . . . 0 0

0 0 (x 3 ) (x 3 ) (x 3 ) (x 3 ) (x 3 ) 0 0 0 . . 0 0

0 0 0 . . . . . 0 0 . . 0 0

0 0 0 0 . . . . . 0 . . 0 0

0 0 0 0 . . . . . . . . 0 0

0

a b c d e

f g h i j

E x h D x h C x h B x h A x h

E h D h C h B h A h

E h D h C h B h A h

A

    

    

    



0 0 0 . . . . . . . . 0 0

0 0 0 0 . . . . . . . . 0 0

0 0 0 0 . . . 0 ( ( 2) ) ( ( 2) ) ( ( 2) ) ( ( 2) ) ( ( 2) ) 0

0 0 0 0 . . . 0 0 ( ( 1) ) ( ( 1) ) ( ( 1) ) ( ( 1) ) ( ( 1) )

0 0 0 . . . 0 0 0

0 0 0 . . . 0 0 0

E x n h D x n h C x n h B x n h A x n h

E x n h D x n h C x n h B x n h A x n h

a b c d e

f g h i j

         

         

    

    

















 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
(27b) 

                                                      
 

In which ,  ,  ,  ,  ,  ... , ,  ,  ,....a a b b c i j j     are obtained 

based on boundary conditions. The determinant of the 

coefficient matrix (A) must be zero to have non-zero 

answer. The smallest positive real root of the equation is 

considered as critical buckling load. It is worthy to note 

that the critical buckling load will be close to the exact 

value by increasing the number of segments. 

In the following, the finite difference method is applied 

to study the stability analysis of columns with different 

conditions, such as variable flexural rigidity, various 

supports and variable axial load. The critical buckling load 

is calculated by using eigenvalue and the calculation 

procedure is done with the aid of MATLAB software [29].  

 

4. Applications 

 

The purpose of this section is to study the performance 

of finite difference method in buckling analysis of columns 

with variable flexural rigidity subjected to variable axial 

load. In this regard, several numerical examples are 

represented. The obtained results are then compared to 

other analytical and numerical solutions presented in 

literature and to finite element method by means of 

ANSYS code [30]. 

 

4-1 Example 1 

 

In this example, in order to check the accuracy and 

exactness of the proposed FDM, five cases consisting the 

buckling analysis of cantilever and simply supported beams 

with constant or variable cross-sections are presented. In 

Case a, we investigated the critical buckling load of a 

stepped simply supported column subjected to compression 

load P . This column is composed of three parts, with 

uniform section at each segment, while the central part has 

a double moment of inertia. Young's modulus of elasticity 

E=210(GPa), and the moment of inertia of the side part is 

I0=2.1644e-9 m4. In case b, the critical buckling load is 

carried out for a fixed-hinged non-prismatic column with 

rectangular cross-section whose depth is reduced to half at 

the pinned end with a  

 

 

 

 

parabolic variation, while its width remains constant. 

Therefore, moment of inertia  xI can be expressed as: 

   25.01 xIxI A                                                  (28)   

Case c deals with the value of buckling load of a pinned 

end prismatic column under axial distributed load of 

))/(21()( 0 LxNxN   where N0=1 is the value at the 

point 0x  and Lx  . Case d refers to the estimation of 

the linear buckling load of cantilever web-tapered beam 

with doubly symmetric I-section. In this case, the web 

height is made to vary linearly along the length so that, at 

the free end of the cantilever, the height is reduced. The 

material and geometrical properties are shown in the Fig. 4. 

All the considered columns and their corresponding cross-

sections, boundary conditions, material and geometric 

properties are depicted in Fig. 4.  

The calculated critical buckling loads for both first cases 

(a & b) are checked with the results obtained by finite 

element method using Ansys software [30]. Both 

mentioned members have been modeled using BEAM54 in 

ANSYS software. This member is a 1D beam element with 

tension, compression, and bending capabilities. The 

element has three degrees of freedom at each node: 

translations in the nodal x and y directions and rotation 

about the nodal z-axis. The obtained result of stability 

analysis of case c is compared with the buckling load 

evaluated by matrices solution proposed by Girgin and 

Girgin [27] whereas, in the case of tapered column, the 

linear buckling load acquired by present method is verified 

with results obtained by numerical method proposed by 

Soltani et al. [28]. The relative errors ( (%) ) between the 

results of present study and the abovementioned methods 

are also calculated.  
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Fig. 4: Prismatic and non-prismatic columns with different 

boundary conditions: geometry, loading and material data. 

 

 
Fig. 5: Columns with constant or variable cross-sections: 

variation of the relative errors ( ) versus the number of 

segments (n) along the column’s length. 

 

A graphic illustration of the variation of the relative 

errors with the number of segments (n) considered in FDM 

is provided in Fig. 5. The following outcomes can be 

expressed after noticing the results represented in Fig. 5: 

1. An outstanding compatibility between the elastic 

buckling loads acquired by current study and 

those computed from the other benchmark 

solutions is pinnacle.   

2. Even by applying 30 segments in the beam’s 

length according to the suggested finite difference 

method, the elastic buckling loads can be exactly 

reckoned bellow the acceptable error rate (1%).   

3. When the number of segments in the applied 

numerical method is increased to more than 50 

pieces, relative errors ( ) declined continuously 

to under 0.1%. 

4. It is not indispensable to use more than 40 

segments in finite difference approach, in order to 

obtain an acceptable accuracy on critical elastic 

buckling loads. 
 

 

4-2 Example 2 

 

In this example, the linear buckling behavior of two sets 

of non-prismatic columns with pinned ends is investigated. 

The web height varies linearly from bigger section (hmax) at 

the mid-span to the smaller one (hmin) at the pinned ends 

with different slopes, as shown in Fig. 11, while the 

geometrical parameters of mid-span section are remained 

constant. In both cases of uniform and non-uniform 

members, both flanges are uniform along axial axis and the 

considered columns are subjected to concentrated 

compressive axial load at two different positions of the 

column’s length, namely at the right end and at the mid-

span plus pinned end. It is also assumed that the beam’s 

material and geometrical properties are symmetric relative 

to the longitude axis which means that both segments have 

a cross-section. In all cases described so far, beam lengths 

(L) vary from 8.0 m to 10.0 m and the tapering ratio 

(
maxmin / hh ) from 0.6 to 1. The material and the 

geometrical properties of the analyzed members are shown 

in Fig. 6. 

In Table 1, the value of the lowest buckling load (Pcr) 

obtained by the present numerical approach using finite 

difference method (FDM) and those obtained by Ansys 

software are tabulated. For more information, the relative 

errors ( ) calculated by the expression 

( ( ) / 100FEM FEM
cr cr crP P P    ) are also presented in the 

following table. In this example, each non-prismatic 

column is modeled with shell element (SHELL63) in 

Ansys [30]. 

On the basis of these comparative results presented in 

Table 1, it can be stated that, there is an excellent 

agreement between the critical buckling loads obtained by 

present method using 30 divisions in the column’s length 

and finite element modelling results.  
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Fig. 6 - A simply supported tapered I-beam: geometry, material 

and loading positions.   

 

 

 

4-3 Example 3 

 

In this example, the critical buckling load for a non-

uniform column with the length of L is considered. For this 

purpose, four members, as shown in Fig. 7, with various 

end conditions (Clamped–Free, Pinned– Pinned, Clamped-

Clamped and Clamped– Pinned) are investigated.  Since 

the flexural rigidity varies along the member axis with an 

exponential function, the variation of flexural stiffness 

relating to the minor axis moment of inertia is expressed 

as: 

0( )

x

LEI x EI e



                     (29) 

In which 0EI is flexural rigidity at the beginning of the 

member. The non-uniformity parameter ( ) can change 

from zero (prismatic beam) to a range of [-2 to -0.1] for 

non-uniform beams. In order to facilitate comparisons 

between results, the following dimensionless parameter is 

adopted:   
2

0

nor cr

L
P P

EI
                                                                   (30)  

For different values of  , the non-dimensional critical 

buckling loads are given in Table 2 and compared to those 

obtained by Wang et al. [12]. From the comparable cases in 

example 3 dealing with the stability analysis of non-

uniform columns with different end conditions, the 

efficiency of the current method can be concluded. 

It is also obvious that the buckling load decreases with an 

increase in non-uniformity parameter ( ), which is 

resulting from the reduction in moment of inertia and 

consequently stiffness of the elastic member. 

 

 

  
Fig. 7: columns with various end conditions 

           

  

 

4-4 Example 4 

 

In this example, the stability behavior of a non-prismatic 

column with the length of L and flexural rigidity of 0EI at 

the beginning is studied. The flexural stiffness of the non-

prismatic column is assumed to be graded smoothly along 

the beam axis by the following power-law formulation: 

0( ) (1 )abx
EI x EI

L
                                                       (31)                                                                                                                          

Where a and b are positive constants. Three stability 

analyses for linear, quadratic and cubic power variation of 

flexural rigidity are considered. In the current example, the 

buckling loads for different sets of non-prismatic members 

with different boundary conditions (Clamped–Free, 

Pinned– Pinned, Clamped-Clamped and Clamped– Pinned) 

are evaluated. The dimensionless critical buckling load 

parameter is calculated based on equation (30) and 

compared to the results evaluated by analytical method 

proposed by Wang et al. [12]. The results are shown in 

Tables 3 to 5. 

As seen in these tables, a significant compatibility is 

observed between the results of present model and exact 

solution presented in [12]. 

 

 
 

 

 

 

 

 

 

 

 

 



Numerical Methods in Civil Engineering, Vol. 1, No. 4, June. 2017 

 

 

Table 1: Simply supported web tapered I-section under compressive concentrated axial load (Fig. 6): linear critical loads comparisons and 

relative errors. 
L 

(m) 


 

The critical buckling load (kN) 

Axial load at pinned end Axial load at mid-span and 

pinned end 

FDM Ansys 

[30] 
 (%) FDM Ansys 

[30] 
 (%) 

8 0.6 194.88 194.38 0.26 128.58 128.68 0.08 

0.8 194.72 194.67 0.03 128.62 128.88 0.20 

1.0 195.01 195.04 0.02 129.25 129.14 0.09 

10 0.6 124.72 124.7 0.02 82.69 82.57 0.15 

0.8 124.79 124.85 0.05 82.72 82.67 0.06 

1.0 124.80 124.9 0.08 82.75 82.71 0.05 

 

Table 2: Comparison of normalized critical buckling loads for columns with exponential variation of flexural rigidity 

C-P column C-C column C-F column P-P column  

FDM Exact 

[12] 

FDM Exact 

[12] 

FDM Exact 

[12] 

FDM Exact 

[12] 

20.184 20.190 39.458 39.480 2.467 2.467 9.866 9.870 0.0 

19.197 19.200 37.53 37.550 2.394 2.394 9.385 9.380 -0.1 

15.64 15.640 30.58 30.600 2.112 2.110 7.634 7.634 -0.5 

11.986 11.990 23.481 23.490 1.784 1.782 5.826 5.827 -1.0 

9.095 9.098 17.855 17.860 1.482 1.480 4.388 4.389 -1.5 

6.837 6.839 13.453 13.460 1.300 1.209 3.263 3.264 -2.0 

 
Table 3: Normalized critical buckling loads for columns with linear variation of flexural rigidity 

C-P column C-C column C-F column P-P column b 

FDM Exact 

[12] 

FDM Exact 

[12] 

FDM Exact 

[12] 

FDM Exact 

[12] 

19.165 19.17 37.46 37.48 2.393 2.393 9.371 9.372 0.1 

17.03 17.03 33.26 33.27 2.235 2.235 8.343 8.343 0.3 

14.736 14.74 28.687 28.70 2.062 2.062 7.255 7.256 0.5 

 
Table 4: Normalized critical buckling loads for columns with quadratic variation of flexural rigidity 

C-P column C-C column C-F column P-P column b 

FDM Exact 

[12] 

FDM Exact 

[12] 

FDM Exact 

[12] 

FDM Exact 

[12] 

18.18 18.19 35.55 35.56 2.319 2.319 8.891 8.893 0.1 

14.288 14.29 27.896 27.91 2.012 2.012 7.004 7.005 0.3 

10.525 10.53 20.471 20.48 1.684 1.683 5.197 5.198 0.5 

 

 
Table 5: Normalized critical buckling loads for columns with cubic variation of flexural rigidity 

C-P column C-C column C-F column P-P column b 

FDM Exact 

[12] 

FDM Exact 

[12] 

FDM Exact 

[12] 

FDM Exact 

[12] 

17.248 17.25 33.718 33.73 2.246 2.246 8.434 8.436 0.1 

11.92 11.92 23.282 23.29 1.798 1.798 5.839 5.840 0.3 

7.358 7.362 14.334 14.35 1.338 1.336 3.626 3.628 0.5 

 

 

 

5. Conclusions 

 

In the present study, the linear stability analysis of 

elastic column with non-uniform cross-section and under 

variable axial load was investigated using a numerical 

approach. In presence of variable flexural rigidity and 

arbitrary compressive axial loads, the governing  

 

 

 

 

 

 

equilibrium equation becomes a differential equation with 

variable coefficients. Hence, the classical and available 

methods are not efficient to derive the closed-form 

solution. The finite difference approximation method is 

thus used to solve the fourth-order differential equation 

with variable coefficients of non-prismatic columns. 
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Finally, the critical buckling loads are acquired by solving 

the eigenvalue problem resulting from a system of 

equations obtained from FDM. The adopted numerical 

method can be applied for buckling calculation of various 

forms of non-prismatic members under variable 

compressive axial load. In order to demonstrate the 

reliability, correctness and efficiency of the proposed 

computations, several comprehensive examples are 

performed by considering the effects of flexural stiffness 

variation, different boundary conditions and various 

loading cases. The acquired results are compared with 

other accessible analytical and numerical solutions. In most 

cases, it can be concluded that by discretizing the 

considered member into 30-40 divisions, the critical 

buckling loads of non-uniform members can be determined 

through a very good accuracy, within a relative error of 

0.1%–0.3%. 
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