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Abstract: 
 

The vibration analysis of horizontally curved beams is generally led to higher order shape 

functions using direct finite element method, resulting in more time-consuming computation 

process. In this paper, the weak-form mixed finite element method was used to reduce the 

order of shape functions. The shape functions were first considered linear which did not 

provide adequate accuracy. Accordingly, Adomian decomposition method was employed to 

enrich the shape functions. As a result, the error percentage reduced significantly. The present 

method was validated by solving different examples and comparing the results with those 

reported by other researchers. 
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1. Introduction 

 

The out-of-plane vibration of curved beams has been 

analyzed for many years due to its extensive use in many 

engineering applications. This subject was primarily 

investigated analytically by Culver 1967[2], Rao 1971[15],  

Kang and Yoo 1994[9]). However, due to the limitations 

existing in analytical analyses, the numerical methods such 

as the finite element method (FEM) drew the attention of 

researchers.  

Several researchers have made efforts to address a 

specific feature in their finite element formulations. Davis 

et al. (1972)[3] derived the stiffness and mass matrices 

from the force-displacement relations and the kinetic 

energy equations, respectively.The matrices were derived 

for out-of-plane coupled bending and torsional motions of a 

curved beam. 
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The analysis was based upon the exact differential 

equations of an infinitesimal element in static equilibrium, 

in which, the effects of transverse shear deformation and 

transverse rotary inertia were considered. Yoo and 

Fehrenbach (1981)[19] analyzed the free vibration of 

horizontally curved beams using finite element method 

(FEM) and neglecting the effects of shear deformation. By 

taking into account the effect of warping and rotary inertia 

due to flexure and torsion, the stiffness and mass matrices 

of a spatial curved beam element was formulated. Lebeck 

and Knowlton (1985)[11] used the ring theory to develop 

the stiffness matrix of a circular beam element considering 

the coupling between the in-plane and out-of-plane loads 

and deflections. On the other hand, Howson and Jemah 

(1999)[6] obtained the out-of-plane frequencies of curved 

Timoshenko beams using dynamic stiffness matrix, and 

discussed the effects of shear deflection and rotary inertia. 

Piovan and Cortinez (2000)[14] addressed the shear 

deformability due to the bending and warping in their 

formulations which covered both open and closed cross 

sections. Yoon et al. (2006)[20] developed an FEM for the 

free vibration of horizontally thin-walled curved beams. 

These equations were based on the curved beam theory 

developed by Kang and Yoo (1994)[9]. The equations of 

motion governing dynamic behavior of thin-walled curved 

beams were used with seven degrees of freedom at each 
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node including the warping degree of freedom. Duan 

(2008)[4] developed nonlinear vibration of curved beams 

owing to large deformation.  
 

The effect of eccentricity between the centroid and shear 

center was addressed in this study. Kim et al. (2009)[10] 

presented a finite beam element involving the secondary 

transverse shear deformation, transverse rotary inertia, and 

torsional rotary inertia. Lee et al. (2002)[12], Chen 

(2003)[1] and Wu and Chen (2011)[18] generalized the 

vibration analysis of horizontally curved beams for non-

classical supports.     

In addition to the use of FEM, some numerical methods 

such as the differential quadrature method (DQM) and 

wave propagation method (WPM) have also been 

employed for the dynamic analysis of curved beams (Kang 

et al. 1996[7]; Kang et al. 2003[8]).     

 The previous FEMs developed for the analysis of 

curved beams were based on the direct method which 

requires high order shape functions or instead, more 

element divisions. The main objective of this paper is to 

reduce the order of shape functions by using mixed finite 

element formulation. To achieve a specific accuracy, the 

order of shape functions needed in the mixed finite element 

is notably lower than those used in the direct finite element 

(Reddy 2006[16]). In other words, the number of elements 

may significantly be decreased in case of using the mixed 

finite element method. In this paper, all the shape functions 

related to the generalized displacements and forces were 

first assumed to be linear. However, acceptable natural 

frequencies were not obtained for curved beams in these 

conditions. Consequently, the linear displacement shape 

functions were enriched to cubic ones using Adomian 

decomposition method (Duan et al. 2012[5]; Mao 

2012[13]) while the force shape functions remained linear. 

Herewith, the results obtained from the present method 

conformed well with those reported by other researchers. 

 

 

2. Mathematical Model 

 

Consider a horizontally curved beam as shown in Fig. 1. 

The radius of curvature and the subtended angle are 

denoted by R and , respectively. The out-of-plane 

vibration of this beam is governed by the following 

differential equations [9]: 

 

 
Fig.1: Horizontally curved beam 

 

 

−
𝜕𝑣𝑦

𝜕𝑠
+ 𝑓𝑦 + 𝜌𝐴

𝜕2𝑤

𝜕𝑠2
= 0 (1a) 

𝜕𝑚𝑥

𝜕𝑠
−
1

𝑅

𝜕𝑏

𝜕𝑠
+
𝑇𝑠𝑣
𝑅
− 𝑣𝑦

+ 𝜌 [𝐼𝑥
𝜕2

𝜕𝑡2
(
𝜕𝑤

𝜕𝑠
)

+
𝐶𝑤
𝑅

𝜕2

𝜕𝑡2
(
𝜕∅𝑧
𝜕𝑠
)] = 0 

(1b) 

𝑚𝑥

𝑅
+
𝜕2𝑏

𝜕𝑠2
−
𝜕𝑇𝑠𝑣
𝜕𝑠

+ 𝑡𝑧 + 𝜌𝐽0
𝜕2∅𝑧
𝜕𝑡2

− 𝜌 [𝐶𝑤
𝜕2

𝜕𝑡2
(
𝜕∅𝑧
𝜕𝑠
)

+
𝐶𝑤
𝑅

𝜕2

𝜕𝑡2
(
𝜕𝑤

𝜕𝑠
)] = 0 

(1c) 

 

where vy, mx, Tsv, b denote shear force, bending moment 

about x axis, St. Venant torsion, and bimoment, 

respectively. The other parameters are defined as: cross 

sectional area (A); moment of inertia about x and y-axes (Ix 

and Iy); warping moment of inertia (Cw); St. Venant 

constant (J); modulus of elasticity (E); shear modulus of 

elasticity (G); mass density (); polar moment of inertia 

(J0).  

These internal actions are expressed in terms of the 

generalized displacements as: 

 

𝑚𝑥

𝐸𝐼𝑥
= −

𝜕2𝑤

𝜕𝑠2
+
∅𝑧
𝑅

 (2a) 

𝑇𝑠𝑣
𝐺𝐽

=
𝜕∅𝑧
𝜕𝑠

+
1

𝑅

𝜕𝑤

𝜕𝑠
 (2b) 

𝑏

𝐸𝐶𝑤
=
𝜕2∅𝑧
𝜕𝑠2

+
1

𝑅

𝜕2𝑤

𝜕𝑠2
 (2c) 

 

 

2.1 Mixed finite element formulation 

 

The combination of the differential Eqs. 1 and 2 results 

in an eighth-order differential equation which generally 

includes a hard solution. To reduce the order of unknown 

functions, a weak-form finite element formulation was used 

in this paper. To this end, the variables w, , mx, bare 

assumed to be independent. Consequently, the weak-form 

finite element is formulated as below: 

 

∫ 𝛿𝑤 (
𝜕2𝑚𝑥

𝜕𝑠2
−
1

𝑅

𝜕2𝑏

𝜕𝑠2
+
𝐺𝐽

𝑅

𝜕2∅𝑧
𝜕𝑠2

𝑠0

0

+
𝐺𝐽

𝑅2
𝜕2𝑤

𝜕𝑠2

+ 𝜌 [𝐼𝑥
𝜕2

𝜕𝑡2
(
𝜕2𝑤

𝜕𝑠2
)

+
𝐶𝑤
𝑅

𝜕2

𝜕𝑡2
(
𝜕2∅𝑧
𝜕𝑠2

)] − 𝑓𝑦

+ 𝜌𝐴
𝜕2𝑤

𝜕𝑡2
)𝑑𝑠 = 0 

(3a) 



Numerical Methods in Civil Engineering, Vol. 1, No. 4, June. 2017 

 

∫ 𝛿∅𝑧 (
𝑚𝑥

𝑅
+
𝜕2𝑏

𝜕𝑠2
−
𝐺𝐽

𝑅

𝜕2∅𝑧
𝜕𝑠2

−
𝐺𝐽

𝑅2
𝜕2𝑤

𝜕𝑠2

𝑠0

0

+ 𝑡𝑧 + 𝜌𝐽
𝜕2∅𝑧
𝜕𝑡2

−
𝜌𝐶𝑤
𝐸𝐶𝑤

𝜕2𝑏

𝜕𝑡2
)𝑑𝑠 = 0 

(3b) 

∫ 𝛿𝑚𝑥 (
𝑚𝑥

𝐸𝐼𝑥
+
𝜕2𝑤

𝜕𝑠2
−
∅𝑧
𝑅
)𝑑𝑠

𝑠0

0

= 0 (3c) 

∫ 𝛿𝑏 (
𝑏

𝐸𝐶𝑤
−
𝜕2∅𝑧
𝜕𝑠2

−
1

𝑅

𝜕2𝑤

𝜕𝑠2
)𝑑𝑠

𝑠0

0

= 0 (3d) 

 

 

The generic functions w, , mx, b, are interpolated based 

on the corresponding nodal values, i.e. W, , Mx, B:  

 

𝑤(𝑠) = 𝑁𝑤(𝑠)𝑊 ; ∅𝑧(𝑠) = 𝑁∅(s)Φz ;  𝑚𝑥(𝑠)

= 𝑁𝑚(𝑠)𝑀𝑥  ;  𝑏(𝑠) = 𝑁𝑏(𝑠)𝐵 
(4) 

 

where Nw, Nf, Nm and Nb are the shape functions 

generalizing the nodal displacement, torsion, moment and 

bimoment, respectively. 

Replacing Eq. 4 into Eqs. 3, the following relations 

yield: 

 
𝐺𝐽

𝑅2
∫ 𝑁𝑤𝑠

𝑇 . 𝑁𝑤𝑠𝑑𝑠
𝑠0

0

 𝑊

−
𝐺𝐽

𝑅
∫ 𝑁𝑤𝑠

𝑇 . 𝑁𝜙𝑠𝑑𝑠
𝑠0

0

Φz

+∫ 𝑁𝑤𝑠
𝑇 . 𝑁𝑚𝑠𝑑𝑠

𝑠0

0

𝑀𝑥

= 𝑉𝑦 +∫ 𝑁𝑤
𝑇𝑓𝑦𝑑𝑠

𝑠0

0

 

(5a) 

−
𝐺𝐽

𝑅
∫ 𝑁𝜙𝑠

𝑇 . 𝑁𝑤𝑠𝑑𝑠
𝑠0

0

 𝑊

+ 𝐺𝐽∫ 𝑁𝜙𝑠
𝑇 . 𝑁𝜙𝑠𝑑𝑠

𝑠0

0

Φz

−
1

𝑅
∫ 𝑁𝜙

𝑇 . 𝑁𝑚 𝑑𝑠
𝑠0

0

𝑀𝑥

+∫ 𝑁𝜙𝑠
𝑇 . 𝑁𝑏𝑠𝑑𝑠

𝑠0

0

 𝐵

= 𝑚𝑧 +∫ 𝑁𝜙
𝑇𝑡𝑧𝑑𝑠

𝑠0

0

 

(5b) 

∫ 𝑁𝑚𝑠
𝑇 . 𝑁𝑤𝑠𝑑𝑠

𝑠0

0

 𝑊 −
1

𝑅
∫ 𝑁𝑚

𝑇 . 𝑁𝜙 𝑑𝑠
𝑠0

0

Φz

−
1

𝐸𝐼𝑥
∫ 𝑁𝑚

𝑇 . 𝑁𝑚𝑑𝑠
𝑠0

0

𝑀𝑥

= Φx 

(5c) 

∫ 𝑁𝑏𝑠
𝑇 . 𝑁𝜙𝑠𝑑𝑠

𝑠0

0

Φz +
1

𝐸𝐶𝑤
∫ 𝑁𝑏

𝑇 . 𝑁𝑏 𝑑𝑠
𝑠0

0

𝐵

= dΦz 

(5d) 

The Eqs. (5a) to (5d) may be rewritten in the matrix 

form as follows: 

 

[

𝜇11 𝜇12 𝜇13𝜇14
𝜇21 𝜇22 𝜇23𝜇24
𝜇31 𝜇32 𝜇33𝜇34
𝜇41 𝜇42 𝜇43𝜇44

]

{
 

 
𝑊̈
Φ̈z

𝑀̈𝑥

𝐵̈ }
 

 

+ [

𝜒11 𝜒12 𝜒13𝜒14
𝜒21 𝜒22 𝜒23𝜒24
𝜒31 𝜒32 𝜒33𝜒34
𝜒41 𝜒42 𝜒43𝜒44

] {

𝑊
Φz

𝑀𝑥

𝐵

}

=  {

𝑉𝑦 + 𝑉𝑦𝑓
𝑀𝑧 +𝑀𝑧𝑡

Φx

dΦz

} 

 (6) 

 

in which  

 

𝑉𝑦𝑓 = ∫ 𝑁𝑤
𝑇𝑓𝑦𝑑𝑠

𝑠0
0

;   

𝑀𝑧𝑡 = ∫ 𝑁∅
𝑇𝑡𝑧𝑑𝑠

𝑠0
0

 
   (7) 

The coefficient matrix 𝜒 denotes the mixed stiffness-

flexibility matrix with the elements 𝜒ijdefined as below: 

 

𝜒11 =
𝐺𝐽

𝑅2
∫ 𝑁𝑤𝑠

𝑇 . 𝑁𝑤𝑠𝑑𝑠
𝑠0

0

; 

𝜒12 = −
𝐺𝐽

𝑅
∫ 𝑁𝑤𝑠

𝑇 . 𝑁𝜙𝑠𝑑𝑠
𝑠0

0

; 

𝜒13 = ∫ 𝑁𝑤𝑠
𝑇 . 𝑁𝑚𝑠𝑑𝑠

𝑠0

0

𝜒14 = 0

𝜒21 = −
𝐺𝐽

𝑅
∫ 𝑁𝜙𝑠

𝑇 . 𝑁𝑤𝑠𝑑𝑠
𝑠0

0

;  

𝜒22 = 𝐺𝐽∫ 𝑁𝜙𝑠
𝑇 . 𝑁𝜙𝑠𝑑𝑠;

𝑠0

0

𝜒23 = −
1

𝑅
∫ 𝑁𝜙

𝑇 . 𝑁𝑚 𝑑𝑠
𝑠0

0

𝜒24 = ∫ 𝑁𝜙𝑠
𝑇 . 𝑁𝑏𝑠𝑑𝑠

𝑠0

0

𝜒31 = ∫ 𝑁𝑚𝑠
𝑇 . 𝑁𝑤𝑠𝑑𝑠

𝑠0

0

; 

𝜒32 = −
1

𝑅
∫ 𝑁𝑚

𝑇 . 𝑁𝜙 𝑑𝑠;
𝑠0

0

𝜒33 = −
1

𝐸𝐼𝑥
∫ 𝑁𝑚

𝑇 . 𝑁𝑚𝑑𝑠
𝑠0

0

𝜒34 = 0
𝜒41 = 0;  

 𝜒42 = ∫ 𝑁𝑏𝑠
𝑇 . 𝑁𝜙𝑠𝑑𝑠;

𝑠0

0

 𝜒43 = 0; 

𝜒44 =
1

𝐸𝐶𝑤
∫ 𝑁𝑏

𝑇 . 𝑁𝑏 𝑑𝑠
𝑠0

0

 (8) 

 

The matrix elements ij are derived as follows: 
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𝜇11 = 𝜌𝐴∫ 𝑁𝑤
𝑇 . 𝑁𝑤 𝑑𝑠;

𝑠0

0

𝜇12 = 𝜇13 = 𝜇14 = 0

𝜇21 = 0;  𝜇22 = 𝜌𝐽0∫ 𝑁𝜙
𝑇 . 𝑁𝜙 𝑑𝑠;

𝑠0

0

𝜇23 = 𝜇24 = 0

𝜇31 = 𝜇32 = 𝜇33 = 𝜇34 = 0
𝜇41 =  𝜇42 =  𝜇43 = 𝜇44 = 0

 (9) 

  

This is in the form of lumped mass matrix if the shape 

functions are assumed to be linear. 

 
2.2 Enrichment of shape functions using Adomian 

decomposition method (ADM) 

 

The above-mentioned finite element may become more 

accurate using higher order shape functions. In this paper, 

the Adomian decomposition method (Duan et al. 2012[5]; 

Mao 2012[13]) was used to enrich shape functions. For this 

purpose, Eq. 1(c) is rewritten as below: 

 

𝜕2∅𝑧
𝜕𝑠2

=
1

𝑅. 𝐺𝐽
𝑚𝑥 +

1

𝐺𝐽

𝜕2𝑏

𝜕𝑠2
−
1

𝑅

𝜕2𝑤

𝜕𝑠2
 (10) 

 

The following equation is obtained by double integration 

of Eq. 10,  

 

∅𝑧(𝑠) = ∅𝑧0 + ∅𝑧0́ 𝑠

+ ∫ ∫ [
1

𝑅. 𝐺𝐽
𝑚𝑥

𝑠

0

𝑠

0

+
1

𝐺𝐽

𝜕2𝑏

𝜕𝑠2
−
1

𝑅

𝜕2𝑤

𝜕𝑠2
] 𝑑𝑠. 𝑑𝑠 

(11) 

 

In Adomian method, the solution ∅𝑧 is commonly taken as 

 

∅𝑧(𝑠) = ∑∅𝑧𝑛

∞

𝑛=0

 (12) 

 

and the integrand on the right side as 

 

1

𝑅. 𝐺𝐽
𝑚𝑥 +

1

𝐺𝐽

𝜕2𝑏

𝜕𝑠2
−
1

𝑅

𝜕2𝑤

𝜕𝑠2

=∑𝐴𝑛(

∞

𝑛=0

∅𝑧0, ∅𝑧1, … . , ∅𝑧𝑛) 

(13

) 

 

Substituting Eqs. 12 and 13 into Eq. 11, yields 

 

∑∅𝑧𝑛

∞

𝑛=0

= ∅𝑧0 + ∅𝑧0́ 𝑠 

+∑∫ ∫ 𝐴𝑛(∅𝑧0, ∅𝑧1, … . , ∅𝑧𝑛)
𝑠

0

𝑠

0

∞

𝑛=0

𝑑𝑠. 𝑑𝑠 

(14) 

 

in which 

 

∅𝑧0: = ∅𝑧0 + ∅𝑧0́ 𝑠 (15a) 

∅𝑧𝑛+1 ≔ ∫ ∫ 𝐴𝑛(∅𝑧0, ∅𝑧1, … . , ∅𝑧𝑛)
𝑠

0

𝑠

0

𝑑𝑠. 𝑑𝑠           (15b) 

𝑛 = 0,1,2, … .. 
 

The solution ∅𝑧 may be estimated more accurately by 

employing more iterations. For the first-order estimation, b 

and w functions are considered linear and their second 

derivatives are then zero. Thus, using the boundary 

conditions as 

 

∅𝑧0 = ∅𝑧(0) = Φz1 

 

∅𝑧0́ =
𝑑∅𝑧
𝑑𝑠

|
𝑠=0

 

 

the following relation yields for ∅𝑧 after one iteration based 

on ADM: 

 

∅𝑧(𝑠) = 𝑁𝜙Φz +
𝑅

𝐺𝐽

𝑠0
2

𝑅2
𝑁M𝑀𝑥 (16) 

 

where 

 

𝑁ϕ(𝑠) = [1 −
𝑠

𝑠0

𝑠

𝑠0
] (17a) 

𝑁M(𝑠) = [
1

3
(
𝑠

𝑠0
) −

1

2
(
𝑠

𝑠0
)
2

+
1

6
(
𝑠

𝑠0
)
3 1

6
(
𝑠

𝑠0
)

−
1

6
(
𝑠

𝑠0
)
3

] 

(17b) 

 

In essence, by using the ADM, the generalized 

displacement ∅z is coupled with the end moments using 

cubic interpolation functions.  

A similar process is performed on Eq. 2(a) to enhance w 

function, as follows: 

 

𝜕2𝑤

𝜕𝑠2
= −

𝑚𝑥

𝐸𝐼𝑥
+
∅𝑧
𝑅

 (18) 

 

By performing double integration of Eq. 18: 

 

𝑤(𝑠) = 𝑤0 + 𝑤0́ 𝑠 + ∫ ∫ [−
1

𝐸𝐼
𝑚𝑥 +

1

𝑅
∅𝑧] 𝑑𝑠. 𝑑𝑠

𝑠

0

𝑠

0

 (19) 

 

Using the boundary conditions as 

 

𝑤0 = 𝑤(0) = W1 

𝑤0́ =
𝑑𝑤

𝑑𝑠
|
𝑠=0

 

 

the following relation yields for w 

 

𝑤(𝑠) = 𝑁𝑤W+
𝑅2

𝐸𝐼

𝑠0
2

𝑅2
𝑁M𝑀𝑥 −

𝑠0
2

𝑅
𝑁ΦΦ𝑧 (20) 

 

where 

 

𝑁W(𝑠) = [1 −
𝑠

𝑠0

𝑠

𝑠0
] 

(21a) 
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𝑁Φ(𝑠) = [
1

3
(
𝑠

𝑠0
) −

1

2
(
𝑠

𝑠0
)
2

+
1

6
(
𝑠

𝑠0
)
3 1

6
(
𝑠

𝑠0
)

−
1

6
(
𝑠

𝑠0
)
3

] 

(21b) 

 

According to Eq. 20, the generalized displacement w 

relates to the end moments, Mx, and end twists, ∅z. The 

functions developed as Eqs. 16 and 20 may become more 

accurate using successive iteration of ADM.  

By replacing the enriched shape functions into Eq. 3, the 

elements of the stiffness and mass matricesare changed as 

follows: 

 

𝜒23 = −
1

𝑅
∫ 𝑁𝜙

𝑇 . 𝑁𝑚 𝑑𝑠
𝑠0

0

−
1

𝑅
∫ 𝑁𝜙

𝑇 . 𝑁𝑀 𝑑𝑠
𝑠0

0

 

𝜒32 = −
1

𝑅
∫ 𝑁𝑚

𝑇 . 𝑁𝜙 𝑑𝑠
𝑠0

0

−
1

𝑅
∫ 𝑁𝑚

𝑇 . 𝑁Φ 𝑑𝑠
𝑠0

0

 

𝜒33 = −
1

𝐸𝐼𝑥
∫ 𝑁𝑚

𝑇 . 𝑁𝑚 𝑑𝑠
𝑠0

0

−
1

𝐺𝐽
∫ 𝑁𝑚

𝑇 . 𝑁𝑀 𝑑𝑠
𝑠0

0

 

(22) 

 

and; 

 

𝜇12 = 𝜇21 = 𝜌𝐴∫ 𝑁𝑤
𝑇 . 𝑁Φ 𝑑𝑠

𝑠0

0

 

𝜇13 = 𝜇31 =
𝑅𝜌𝐴

𝐸𝐼𝑥
∫ 𝑁𝑤

𝑇 . 𝑁M 𝑑𝑠
𝑠0

0

 

(23) 

 

The other elements remain unchanged.  

It is worthy to note that by using enriched shape 

functions, the mass matrix is converted to the consistent 

matrix as compared with the lumped mass matrix derived 

by Eq. 9. Furthermore, the shape functions related to the 

moment and bi-moment are still assumed linear in this 

paper.  

 

 

3. Numerical Verifications 

 

To verify the present formulation and the effect of the 

enriched shape functions, two examples are investigated in 

the following. For the simple supports studied in these 

examples, the degrees of freedom related to the 

displacement and twist at the supports are restrained. In 

order to apply boundary conditions, the rows and columns 

of the stiffness and mass matrices, corresponding to the 

restrained degrees of freedom, are eliminated. 

 

3.1 Example 1 

 

A curved beam with length of L=10.16m is assumed as 

shown in Fig. 2. The simple support conditions are 

considered for both ends. By taking the beam length to be 

constant, the subtended angle of the curve is changed from 

zero (straight beam) to 90 degree (a quadrant).  The 

geometrical and mechanical properties of the beam are 

given in Table 1. 

 
Fig. 2: A simply supported curved beam 

 
Table 1: Geometrical and mechanical properties of curved beam 

Cross sectional area (A) 9.292x10-3 m2 

Moment of inertia about x-axis (Ix) 1.134x10-4 m4 

Moment of inertia about y-axis (Iy) 3.886x10-5 m4 

Warping moment of inertia (Cw) 5.559x10-7 m6 

St. Venant constant (J) 5.386x10-7 m4 

Modulus of elasticity (E) 200 GPa 

Shear modulus of elasticity (G) 77.2 GPa 

Mass density () 7855 kg/m3 

 

Four natural frequencies obtained from the present 

formulation are given in Table 2. As observed in the table, 

the fourth frequency cannot be extracted for more straight 

beams because, the fourth frequency relates to twist and the 

beams with less subtended angle have insignificant twisting 

mass.  

 
Table 2: Two fundamental natural frequencies for Example 1 

Angle 

(degree) 
1 

(rad/s) 

2 

(rad/s)  

3 

(rad/s)  

4 

(rad/s)  

0 53.78 213.98 481.87 - 

10 31.96 139.74 286.01 - 

20 19.93 114.66 266.16 - 

30 13.98 95.54 245.35 - 

40 10.55 80.85 225.71 - 

50 8.34 69.42 207.54 - 

60 6.77 60.36 185.64 2052.0 

70 5.59 53.11 171.18 2160.3 

80 4.64 47.26 158.24 2365.4 

90 3.85 42.41 145.55 2605.8 

 

The accuracy of the first natural frequencies are 

compared with previous results (Yoon et al. 2006[20]) in 

Table 3.It should be noted that the present results are based 

on the models that are divided into just two elements. As 

observed in the table, the present mixed formulation with 

linear shape functions has significant error even in case of 

the straight beam (zero subtended angle). In case of the 

quadrant curve (90 degree subtended angle), the calculation 

error is about 60 percent and, of course, not acceptable. 

However, the calculation errors reduced considerably by 

using enriched shape functions resulting from ADM. The 

errors involved in this case are less than one percent. The 

fundamental frequency is revealed versus different 

subtended angles in Fig.3. The figure confirms that the 

results with assumption of the enriched shape functions 

correlate well with the analytical and previous solutions. 

According to Eqs. (16) and (20), the shape functions of  

and w were upgraded from linear to cubic functions using 

one iteration in the Adomian method while the other shape 

functions were kept linear. 
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Table 3: Comparison of the first natural frequencies for Example 1 

Angle 

(degree) 

Analytical Yoon et al. (2006) Present (Linear) Present (enhanced) 

(rad/s) Error(%) (rad/s) Error(%) (rad/s) Error(%) 

0 53.80 53.80 0.00 64.84 20.52 53.78 0.04 

10 31.86 31.87 0.03 40.62 27.50 31.96 0.31 

20 19.96 19.96 0.00 26.56 33.07 19.93 0.15 

30 13.99 13.99 0.00 19.09 36.45 13.98 0.07 

40 10.54 10.54 0.00 14.66 39.09 10.55 0.09 

50 8.29 8.29 0.00 11.77 41.98 8.34 0.60 

60 6.71 6.70 0.15 9.73 45.01 6.77 0.89 

70 5.53 5.51 0.36 8.21 48.46 5.59 1.08 

80 4.60 4.57 0.65 7.02 52.61 4.64 0.87 

90 3.85 3.80 1.30 6.04 56.88 3.85 0.00 

 

 

 
Fig. 3: Frequency-subtended angle curves for Example 1 

 

By enhancing the displacement shape functions, not only 

do the coefficient matrices become more accurate, but the 

relations between different variables is also enriched.        

 

 

3.2 Example 2 

 

In the second example, the length of the curved beam is 

assumed to be 5.12 m. while the other geometrical and 

mechanical properties are the same as those noted in Table 

1 with the exception of J which is taken as 1.471x10-5 m4. 

This implies that the curved beam assumed in this example 

possesses more torsional rigidity.  The subtended angle of 

the curve is changed from 10 degree to 90 degree while the 

beam length is fixed. 

The natural frequencies estimated according to this study 

are compared with those obtained by Yoo and Fehrenbach 

(1981)[19] and Yoon et al. (2006)[20] as given in Table 4. 

The linear shape functions are not accurate again with 

some errors exceeding 30 percent in this case. Whereas, by 

using enriched shape functions, the errors decreased 

notably down to the range of 0.1 to 4.1 percent. The 

fundamental frequency is depicted versus different 

subtended angles in Fig. 4. An obviously good agreement 

is inferred between the results with the assumption of 

enriched shape functions and the previous solutions. 

 

 

 

4. Conclusions 

 

A mixed finite element formulation was used for 

dynamic analysis of horizontally curved beams. The direct 

finite element solution of a horizontally curved beam is 

generally led to higher order shape functions, resulting in 

more time-consuming computation process. In this paper, 

the weak-form mixed finite element method was used to 

reduce the order of shape functions. In this case, the shape 

functions were initially considered linear which did not 

provide adequate accuracy. Accordingly, the shape 

functions were enriched using ADM. As a result, the error 

percentage was dramatically reduced. In essence, by 

enhancing the displacement shape functions, the coefficient 

matrices become more accurate on one hand, and the 

relations between different variables is enriched on the 

other hand. According to the examples solved in the paper, 

the results obtained from the proposed method were 

comparable with those reported by other researchers. 
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Table 4: Comparison of the first natural frequencies for Example 2 

Angle 

(degree) 

Yoo and Fehrenbach (1981) Yoon et al. (2006)    Present (Linear) Present (enhanced) 

 (rad/s) (rad/s) Error(%) (rad/s) Error(%)  (rad/s) Error(%) 

10 204.7 201.3 1.7 247.2 20.8 204.9 0.1 
20 190.2 183.2 3.7 228.1 19.9 188.1 1.1 
30 165.8 160.9 3.0 204.1 23.1 166.7 0.5 
40 141.7 139.5 1.6 179.7 26.8 144.9 2.3 
50 121.3 120.1 1.0 156.9 29.3 124.6 2.7 
60 103.9 103.0 0.9 136.3 31.2 106.4 2.4 
70 89.3 88.3 1.1 117.8 31.9 90.1 0.9 
80 76.8 75.4 1.8 100.9 31.4 75.3 2.0 
90 64.0 64.1 0.2 85.2 33.1 61.4 4.1 

 

 

 
Fig. 4: Frequency-subtended angle curves for Example 2 
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