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Abstract: 

 

This paper presents a novel procedure for solving the equations system of the rotating crack 

model used for reinforced concrete. It is implemented in the programme NonOPt where it is used 

to optimise the reinforcement design of D regions. The procedure is based on solving explicit 

closed-form relations without the need to incrementally increase the applied loads. The solution 

procedure is based on a secant modulus approach and is developed initially on the basis that the 

stress-strain response of the steel and concrete is linearly elastic. Subsequently the effect of 

material nonlinearities is included and the solution procedure is adapted accordingly. A 

reinforcement design procedure for membrane elements is described along with some case 

studies. The design procedure minimises the amount of reinforcement required to satisfy 

predefined design constraints. Material nonlinearities are taken into account, stress and strain 

compatibilities are satisfied and the design considers both the ultimate and serviceability limit 

states through the application of appropriate design constraints. 

d
 

 

1. Introduction 

 

The safe, serviceable and economical design of 

reinforced concrete structures requires a proper 

determination of the reinforcement amount and 

distribution. To this end, it is convenient to subdivide 

concrete structures into B (Bernoulli) and D (Disturbed) 

regions. In B regions the Bernoulli’s hypothesis that plane 

sections remain plane after loading is applicable which 

makes the design straightforward. However, in D regions 

plane sections do not remain plane owing to the 

geometrical or loading discontinuities. Typical examples of 

D regions include deep beams, pile caps, squat shear walls 

and beam-column connections. 

 D regions are typically designed using empirical design 

equations or strut and tie models (STM). The applicability 

of empirical design equations are limited and are not  
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discussed further. Strut and tie modelling is an extension of 

the truss analogy used for shear in B regions. The first 

stage in the development of a strut and tie model involves 

the transformation of a continuous structure into a series of 

compressive concrete struts and tensile reinforcement ties. 

Despite the popularity and conceptual simplicity of the 

strut and tie method, the development of STM is not 

straightforward since it involves the transformation of a 

continuous structure into a discrete truss model (Liang et 

al. 2002)[12]. Even for fairly simple structural members a 

certain level of experience is required to decide the most 

appropriate STM as various models can be developed for a 

given structure as illustrated in Fig. 1. Further complexities 

arise in the estimation of the stiffness of the truss members 

and the evaluation of the effective concrete strength in the 

struts and nodes (Yun 2000[18]; Tjhin and Kuchma 

2002[16]). 
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Fig.1: Possible truss models for dapped-end beam: a) 

reinforcement layout and b & c) truss models (Fernández Ruiz et 

al. 2007)[8). 

 

D regions can also be designed with linear finite element 

analysis which neglects the internal redistribution of 

stresses resulted from material nonlinearity. The authors 

have previously presented a nonlinear finite element based 

procedure for the design of reinforcement in D regions 

(Amini Najafian and Vollum, 2013a)[2]. The design 

procedure is implemented in NonOpt (Amini Najafian, 

2011)[1] which is a FORTRAN program that works in 

conjunction with the commercial finite element program 

DIANA (TNO DIANA, 2007)[7]. The design procedure 

utilises a novel optimisation procedure which finds the 

minimum area of reinforcement required to satisfy the 

design constraints subject to practical detailing 

considerations. The design procedure is further verified by 

Amini Najafian et al. 2013[2-3-4] by designing a series of 

continuous beams tested experimentally by Rogowsky et 

al. 1986 [14]. NonOpt is developed to run more advanced 

design strategies (Amini Najafian and Vollum, 2013b-c)[3-

4] which give slightly further optimised reinforcement 

designs sacrificing the procedure simplicity and 

computational efficiency. 

A key feature of the method is that it uses the same 

constitutive relationships in the reinforcement design and 

the subsequent NLFEA for which the equations of the 

Modified Compression Field Theory (Collins et al., 

2008)[6] are adopted. It allows explicit performance-based 

design constraints, such as crack widths, to be specified at 

the design stage. This fact and the application of general 

material nonlinearities including tension stiffening and 

strain hardening in both the analysis and design, are not 

considered in the surprisingly few finite element based 

design procedures in the literature, Fernández Ruiz and 

Muttoni 2007[9]; Tabatabai and Mosalam 2001[15]. 

This paper initially describes the equations of the 

Modified Compression Field Theory (MCFT). It goes on to 

describe the novel numerical procedure used in the design 

strategy to solve the equations of the MCFT with closed-

form relations. The procedure is novel in the sense that the 

equations are solved explicitly in terms of the principal 

compressive strain in the concrete. The solution procedure 

is based on a secant modulus approach which does not need 

the loads to be applied incrementally. The loading is 

assumed to be proportional and the solution procedure is 

developed initially on the basis that the stress-strain 

response of the steel and concrete is linearly elastic. 

Subsequently the effect of material nonlinearities is 

included and the solution procedure is adapted accordingly. 

Finally, the paper broadens the reinforcement design 

procedure for membrane elements, presented by Amini 

Najafian and Vollum 2013[2] in a wider aspect for the 

whole structure, in case studies on single elements. The 

procedure finds the minimum amount of reinforcement 

required to satisfy the predefined design constraints. 

2. Modified Compression Field Theory 

The modified compression field theory was derived 

from a consideration of equilibrium and strain 

compatibility in membrane elements (Vecchio and Collins, 

1986[17]; Collins et al., 2008[6]). The theory is a rotating 

crack model in which cracked reinforced concrete is treated 

as a new material with its own stress-strain characteristics. 

The compatibility equations and stress-strain relationships 

are formulated in terms of average stresses and average 

strains. The values of the average stresses in the component 

materials differ from the local concrete and reinforcement 

stresses at crack locations. Therefore, it is also necessary to 

check local stress conditions in the reinforcement and 

concrete at cracks. Other key assumptions are that the 

principle stress directions are coincident with the principle 

strain directions and the concrete compressive strength is 

dependent on the transverse tensile strain. The theory is 

described by the following equations.  

 

Equilibrium 

Average stresses 

                      (1) 

                      (2) 

                                     (3) 

Stresses at cracks 

                  (4) 

                (5) 

, , and  are respectively the longitudinal, 

transverse and shear stresses in reinforced concrete 

element.  ( ) is the compressive (tensile) principal 

stress in concrete, and  and  (  and ) are the 

mean (maximum) reinforcement stresses in the two 

directions with reinforcement ratios of  and .  and 

 are the crack shear stress and cracking angle 

respectively. 

 

(a) (b) (c) 

(a) (b) (c) 
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Strain Compatibility 

                                               (6) 

                                               (7) 

                         (8) 

Crack width 

                                                                             (9) 

                                                               (10) 

,  and  are respectively the mean longitudinal, 

transverse and shear strains in cracked concrete.  ( ) is 

the compressive (tensile) principal strain in concrete.  is 

the crack width and  is the average inclined crack 

spacing.  and  are the average crack spacings that 

would occur if the member were subjected to tension in the 

l or t direction. 

                                                       (11) 

in which  is the diagonal distance to the closest l 

reinforcement bar in section from current depth,  is the 

diameter of the closest bar and  stands for the steel ratio 

of the closest bar within a concrete area  above and 

below the bar known as the effective area. The crack 

spacing  is defined similarly. 

Constitutive Relationships 

                                                            (12) 

 (12) 

                                                                     (13) 

 (13) 

                                                                 (14)  

 (14) 

                                                                    (15) 

 (15) 

                                                                   (16)                           

 (16) 

where  is a softening coefficient which depends on the 

principal tensile strain in the concrete, , as proposed by 

Vecchio and Collins (1986). Fig. 2 depicts the constitutive 

relations for cracked concrete. 

 

Shear stresses on crack 

                                 (17)  (17) 

in which  is the concrete compressive strength in MPa,  

is the maximum aggregate size in  and  is the 

maximum local shear stress in MPa that crack is able to 

transfer. 

 

Fig.2: Stress-strain relationships for cracked concrete 

 

3. Solution Procedure 

The eleven governing equations for a membrane 

element, equations (1) to (3), (6) to (8) and (12) to (16) 

contain 14 unknown variables (seven stresses, , , , 

, ,  and , five strains, , , ,  , , the 

cracking angle, , and the softening coefficient, ). When 

three unknown variables e.g. applied stresses ,  and 

 are given, the remaining 11 unknowns can be found by 

solving the eleven governing equations. 

The authors have developed a novel solution procedure 

for solving the 11 equations of the MCFT, in terms of the 

applied stresses, which is believed to be computationally 

efficient. The procedure is utilises a secant modulus 

approach in which the loads are applied in a single step. 

The solution procedure is initially formulated assuming 

that the stress-strain response of the steel and concrete is 

linearly elastic and  equals zero. In this case the two 

unknown variables,  and , in (1) and (2) are substituted 

with their values from the strain compatibility equations, 

(6) and (7), so we have: 
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  (18) 

 

  (19) 
 

where ,  and  are elastic moduli of concrete and 

reinforcements in the longitudinal and transverse directions 

respectively. Multiplying (18) and (19) respectively by 

 and  and subtracting the results 

removes the unknown, . 

 

 (20) 

 

In addition,  can be determined by rearranging (3) as 

follows: 
 

 ,   (21) 
 

 ,   (22) 
 

Note that  as in the rotating crack model it is 

assumed that  (see equation 3). Substituting  

from (21) and (22) as appropriate into (20), allows the 

equations of the MCFT to be reduced to the following two 

closed-form equations in which the only unknown is . 

 

 

 

 

 
 

 

 

 

 
 

 

Equations (23) and (24) are differentiable functions (see 

Fig. 3) and as  must be negative, multiple extra solutions 

are omitted by applying a negative solution domain for . 

Bracketing methods, such as Bisection Method or the 

False-position Method, are most appropriate for finding the 

solution as open methods, such as the Newton-Raphson 

Method, can lead to premature termination of computations 

as the tangent line to the curve in which there is the 

solution at some point can intersect the  axis outside the 

valid domain as depicted in Fig. 3. Having found , the 

remaining unknowns can be calculated directly.

 

 

 

 

 

 

 

 

Fig. 3: Solution in the closed-form relations: a) open methods 

diverge on the right side of the solution and b) open methods 

diverge on the left side of the solution. 

 

(b) 

(23) 

(24) 

(a) 
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3.1 Nonlinear concrete. 

This procedure is readily extended to allow for the effect 

of concrete material nonlinearities in compression by 

updating the secant modulus until the stress obtained from 

the secant elastic modulus is adequately equal to the stress 

calculated with the specified nonlinear stress-strain 

relationship (see Fig. 4). Further details of the solution 

procedure can be found in Amini Najafian, 2011[1]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.4: Secant modulus computational process: a) there is a 

solution and b) there is no solution (overstressed element). 

 

Tension stiffening is taken into account by modifying 

the applied stresses by an amount equivalent to the stress 

resisted by concrete in tension. Normal equivalent stresses 

and shear equivalent stress are defined as 

,  and 

. The next stage is to 

express the three equations of equilibrium, i.e. (1) to (3), in 

terms of the equivalent stresses. This allows the same 

solution procedure to be used as previously. The only 

change is that the equivalent stresses are unknown at the 

beginning of the analysis. Therefore, an iterative analysis is 

needed to find the two unknowns,  and , which define 

,  and . 

 

 

 

  

 

 

 

 

 

 

 

 

Fig.5: Tension stiffening computations. 

 

Fig.5 illustrates the procedure used to calculate the 

equivalent stresses. The equivalent stresses are calculated 

in a nested loop in which the concrete is assumed to be 

linear in compression for reasons of numerical stability. 

The aim is to determine  and 

 within acceptable tolerances where  

and  are the values from the previous iteration which 

are used to obtain the updated values,  and . 

The unknowns,  and , are found sequentially as shown 

in Figure 5. The figure shows that the cracking angle is 

found for each value of  ( ), then the 

equivalent stresses from the alpha and  are calculated 

and the second loop continues until  converges. The 

procedure starts by finding the equivalent stresses in a loop 

for which the system of equations is solved with linear 

concrete in compression. The computations continue until 

the equivalent stresses converge after which the secant 

modulus of the concrete is adjusted in the outer loop until 

(a) 

(b) 
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the stress obtained from the secant elastic modulus is 

adequately equal to that calculated with the specified 

nonlinear stress-strain relationship. 

 

 

4. Reinforcement Optimisation 

This section describes the procedure developed to 

optimise the reinforcement design in a single element. 

Similar procedure is used by Amini Najafian and Vollum 

(2013a)[2] for design of groups of elements in the 

structure. The design procedure minimises the sum of the 

reinforcement ratios in the element subject to predefined 

design constraints. The design considers both the ultimate 

(ULS) and serviceability limit states (SLS) through the 

application of appropriate constraints. The constraints and 

their associated factor of safeties are expressed in terms of 

mean strains in the component materials or maximum 

stresses in the reinforcements at cracks. Applying the 

design constraints, prevents element failure, ensures the 

safe transmission of the applied loads through the cracks, 

limits the deformations to prescribed limits and ensures 

practical values for the reinforcement ratios. The design 

satisfies both stress and strain compatibilities, and takes 

account of the tensile capacity of concrete, concrete 

nonlinearity and the post-yield strength of reinforcing bars. 

 

4.1. General Concept 

The total weight of reinforcement in a rectangular 

element with sides of length of  and , equals 

 where t is the element thickness. 

Therefore, the reinforcement weight is minimised by 

finding the minimum sum of the reinforcement ratios  

and . The final stress and strain states inside the element 

are dependent on the reinforcement ratios in both the l and t 

directions. It follows that the values of the required 

reinforcement ratios in the l and t directions are 

interdependent and there is no unique solution for  and 

. The aim of the design is to find the minimum sum of 

 which satisfies the design constraints by solving 

the 11 equations of the rotating crack model. The knowns 

in the system of equations are the applied stresses, ,  

and , as well as the material properties. The unknowns 

are the internal strains, , , ,  and , the stresses 

in the reinforcements,  and , the stresses in the 

concrete,  and , the cracking angle, , and the 

reinforcement ratios,  and . The unknown shear strain, 

, only appears in equation 8 and can be calculated 

directly in terms of the other unknowns. 

A number of optimisation methods are available in the 

literature but there is no known method for determining the 

minimum solution of a general problem (Ozgur 2005)[13]. 

According to comparative studies (Kao 1998)[11], the 

generalised reduced gradient methods and the sequential 

quadratic programming methods are two of the best 

deterministic local optimisation methods. These methods 

require gradient information unlike methods such as 

genetic algorithms, simulated annealing and tabu search 

which can be used for non-differentiable discontinuous 

highly nonlinear objective constrained functions. General 

optimisation methods may be used to solve the 

reinforcement minimisation problem when linear concrete 

and linear reinforcement are applied, but they cannot be 

used for nonlinear material properties due to the presence 

of extra solutions as explained by Amini Najafian (2011). 

These extra solutions mislead general optimisation methods 

which can generate spurious solutions having no physical 

meaning. 

 

4.2. Proposed Solution Procedure 

The minimum area of reinforcement is obtained by 

generating an equally spaced mesh in the  plane 

(see Fig. 6) between the minimum and maximum permitted 

reinforcement ratios,  and . The solution 

procedure involves moving through the mesh on parallel 

lines from the minimum to the maximum value of 

. At each coordinate the design constraints are 

checked until all the conditions are fulfilled. This involves 

first solving the rotating crack equations and then checking 

the design constraints. When a solution is obtained in the 

 plane, the mesh is refined around the solution and 

the computations are repeated on the refined mesh until the 

required level of precision is achieved. In the  

plane, the sum of reinforcement ratios at each point is 

related to the perpendicular distance from the point to the 

line : 

 

               (25) 

 

       (26)

  

It is clear that   defines a set of 

parallel lines in the  plane between  and 

. The total amount of reinforcement, 

, is constant along each line and 

Fig.6: Mesh generation and refinement 
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increases from  to  as the line moves from 

 towards  (see Fig. 6). 

 

Fig.6: Mesh generation and refinement 
 

When the amount of reinforcement in a coordinate is 

recognised to be enough to fulfil the design constraints, the 

mesh is refined between the parallel line passing through 

the solution and the adjacent parallel line with  less total 

reinforcement. The incremental step 

 in which  is the number of 

mesh divisions applied by the user. The mesh refinement 

includes both the bracketing parallel lines. The incremental 

step is taken as    in the refined mesh. 

The mesh refinement may need to be repeated several 

times before the required precision is achieved. Fig. 6 

shows a mesh generated for a case with  and 

 where  is the number of mesh refinements. The 

mesh is refined once around points A and B which 

correspond to the initial solutions for two different loading 

conditions. In the first loading condition, a point on  

satisfies all the design constraints and therefore all the 

points on lines, , , ,  and  are 

checked sequentially to find a solution. Similarly, for the 

second loading condition, the valid answer is on  and so 

the coordinates on lines , , ,  and  

are again checked sequentially until a solution is found. 

Note that when a point on the final refined mesh fulfils 

all the constraints, the computations continue along that 

current parallel line as there may be more than one point on 

the line which satisfies all the design constraints. The final 

solution is taken as that with the greatest factor of safety in 

cases where multiple solutions exist with the same value of 

. The overall factor of safety of an element is 

defined as the least of the factors of safety calculated for 

each design constraint as described in section 4.3. The 

flowchart in Fig. 7 illustrates the procedure used to find the 

minimum area of reinforcement. 

 

Fig.7: Flowchart for finding the minimum reinforcement design 

in an element. 

 

4.3 Design Constraints 

The final reinforcement ratios depend on the design 

constraints adopted for the serviceability and ultimate limit 

states. The maximum load that can be carried by a 

membrane element is limited by the ultimate compressive 

strength of the concrete or the tensile strength of the 

reinforcement. Deformations are controlled by limiting the 

principal tensile strain in concrete as well as the 

reinforcement strains in the l and t directions. The 

minimum and maximum reinforcement ratios are also 

limited in accordance with structural codes. Consequently, 

the design constraints are expressed in terms of maximum 

and minimum reinforcement ratios, maximum permissible 

stresses in the reinforcement at cracks, and mean strains in 

both the concrete and reinforcement. Limiting the mean 

strains in the concrete controls both the maximum crack 

width and the concrete compressive stress which depends 

on both the principal compressive and tensile strains. 

The factor of safety for the average strains is defined as 

the ratio of the permissible strain to the actual strain. For 

instance, the factor of safety for tensile principal strain in r 

direction is calculated as  where  is the 

permissible strain. A different approach is used to calculate 

the safety factor for the reinforcement at cracks since the 

exact values of maximum stresses are unknown due to 

indeterminacy. The safety factor at the crack is defined as 
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 when  or 

the reinforcement is overstressed in both directions. 

 when  and the least stressed 

reinforcement is not overstressed as discussed by Amini 

Najafian (2011)[1]. 

                                                

5. Case Studies 

Two case studies are presented in this section to 

compare the design results of membrane elements in cases 

with linear and nonlinear material properties. The elastic 

moduli of  and  

are considered for the linear case and the Hognestad 

parabola (Hognestad, 1951)[10] with compressive strength 

 and strain at peak stress  

is used for nonlinear modelling of concrete. 

 

 

 

 

 

 

 
 

     

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

            

 

 

 

 

 

 

 

 

(a) 

(b) 

Fig.8: Strain variation through the initial mesh in Case study 1 – Load case 1: a) concrete compressive strain, b) strain in the l-

bars and c) strain in the t-bars.(Continued) 
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The design constraints limit the average tensile strains in 

the reinforcement to   and the 

compressive strain in the concrete to . 

The minimum and maximum permitted reinforcement 

ratios are assumed to be  and . The number of 

mesh divisions is taken as  and the initial mesh 

( ) is refined with one level of refinement 

( ) unless otherwise stated. 

 

 

5.1. Linear material properties (Case study 1) 

 

This study considers a membrane element with linear 

material properties. The element is initially subjected to 

Load case 1 with equal normal stresses 

 and shear stress . The 

variations in the concrete compressive strain and 

reinforcement strains in the first generated mesh are shown 

in Figure 8 in which compressive strains are negative. The 

compressive strain in the concrete is distributed over the 

mesh symmetrically since and the material 

Fig.8: (Continued) 

 

(a) 

Fig.9: Variations of reinforcement strains through the refined mesh in Case study 1 – Load case 1: a) strain in the l-bars and 

b) strain in the t-bars. 

 

(c) 

(b) (a) 
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properties are the same for the l and t reinforcements. 

Figure 8 (a) shows that the compressive strains in concrete 

are not critical in this case as the peak strain is less than the 

limiting value of . However, the tensile stresses in  

the steel bars are only less than the permitted stress in the 

dark blue area in the contours in Figures 8 (b) and (c). 

From these contours it is seen that the minimum required 

reinforcement ratios for this symmetrical loading case are 

 where the strains in the steel bars 

equal  in the two directions. 

It is clearly unnecessary to analyse all the coordinates in 

the mesh as is done in this example for purpose of 

illustration. In reality, the solution procedure can be 

stopped as soon as a solution is found. Figure 9 shows the 

refined mesh ( ) adjacent to the initial solution and  

be seen that the minimum reinforcement obtained after the 

mesh refinement is . Table 1 gives 

the analysis results for these two solutions. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

   

Load 

case       (rad)  

1 
0 0.018400 0.018400 -4.5045E-4 2.4456E-3 2.4456E-3 0.7854 0.036800 

1 0.018040 0.018040 -4.5045E-4 2.4945E-3 2.4945E-3 0.7854 0.036080 

2 

0 0.011200 0.018400 -1.9630E-3 2.4917E-3 -1.9028E-3 1.4550 0.029600 

1 0.011200 0.016240 -1.9948E-3 2.4875E-3 -1.9361E-3 1.4569 0.027440 

2 
0.011164 0.015952 -1.9991E-3 2.4949E-3 -1.9405E-3 1.4572 0.027116 

0.011200 0.015916 -1.9996E-3 2.4868E-3 -1.9412E-3 1.4572 0.027116 

Table.1: Solutions in Case study 1. 

 

 
(b) 

(a) 

Fig.10: Strain variation through the initial mesh in Case study 1 – Load case 2: a) concrete compressive strain, b) strain in the 

l-bars and c) strain in the t-bars.(Continued) 
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The applied loads are then increased to make the concrete 

become critical in compression (Load case 2). The revised 

loadings are ,  and 

. The design constraints and number of mesh 

divisions are the same as before but two levels of mesh 

refinement are applied. 

The contour in Figure 10 (c) shows that the transverse 

strains are no longer critical anywhere in the  

plane. However, the longitudinal strains as well as the 

concrete compressive strains are acceptable only in the 

dark blue areas of Figures 10 (a) and (b) from which the 

optimum reinforcement ratios given in Table 1, 

 and , are determined. The 

values of the strains for the solution in the initial mesh are 

given in the third row of Table1. The fourth and the fifth 

rows in Table 1 show the solutions after the first and the 

second mesh refinements. In the third generated mesh, the  

second mesh refinement, two coordinates satisfy all the 

design constraints and are valid solutions. 

5.2. Influence of Nonlinear Concrete (Case study 2) 

This example redesigns the element considered in Case 

study 1 with nonlinear concrete. The Hognestad parabola is 

used to define compressive stress-strain relationship for 

concrete. The reinforcement is assumed to be linearly 

elastic as before. The element is initially subjected to Load 

case 1 from Case study 1 where  and 

. 

 

 

 

Table 2 shows the outcome of the design procedure for 

load case 1 with no mesh refinement, , and for one 

level of mesh refinement, . The minimum 

reinforcements are coincidentally equal to those which 

were derived assuming that the concrete was linearly 

elastic in compression (see Table 2).The cracking angle 

and the strains are also similar except for . In this 

example, the compressive principal strain in concrete is 

very small and as a result the effect of concrete nonlinearity 

is insignificant. Figure 11 depicts the strain distributions 

over the first generated mesh. The permitted strain contours 

for the steel bars are clearly labelled with the value of 

0.0025 to enable the minimum possible reinforcement to be 

verified from the figure. For some combinations of  and 

, the membrane element is instable and therefore the 

strain distributions do not cover the entire mesh. The 

symmetrical form of the contours, due to the symmetrical 

loading and reinforcement properties, is seen in this figure. 

To compare the design results given from the element 

modelled with linear concrete with those for the element 

modelled with nonlinear concrete, the second loading 

condition in Case study 1, ,  

and , was applied but in this loading 

condition the element could not carry the loads with any 

reinforcement combination in the permitted range. 

Therefore, the stresses were reduced to , 

 and  in Load case 3. The 

results for this loading condition are given in Table 2 for 

(a) 

Fig.10: (Continued) 

 

 

 

(c) 

(c) 
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 for both linear ( ) and 

nonlinear concrete. In this case, the compressive strain is 

critical for the nonlinear concrete as shown in Table 2. 

The strains in the nonlinear case are plotted over the 

initial mesh in Figure 12 from which the minimum required 

reinforcements in Table 4 can be checked. The strains in 

the transverse direction are always compressive and they

 are in the permitted domain so long as the element is 

stable. However, the longitudinal strains exceed the 

permitted strain beyond the  contour as shown 

in Figure 12 (b). The concrete compressive strains also 

violate the permitted strain at some coordinates. The limit 

for this strain is  which separates clearly the 

invalid area, the blue area in Figure 12 (a), from the 

acceptable area. 

 

 

Table.2: Solutions in Case study 2. 

Load 

case 
concrete        (rad) 

 

(MPa) 

1 nonlinear 
0 0.01840 0.01840 -9.5854E-4 2.4457E-3 2.4457E-3 0.7854 -10.0000 

1 0.01804 0.01804 -9.7198E-4 2.4945E-3 2.4945E-3 0.7854 -10.0000 

3 

linear 

0 

0.0076 0.0040 -1.3192E-3 2.1780E-3 -1.2817E-3 1.4676 -29.2853 

nonlinear 
0.0112 0.0184 -1.9112E-3 1.5126E-3 -1.8538E-3 1.4421 -23.5663 

0.0148 0.0148 -1.9606E-3 1.1385E-3 -1.9135E-3 1.4481 -24.7058 
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Fig.11: Strain variation through the mesh in Case study 2 – Load case 1: a) concrete compressive strain, b) strain in the l-bars 

and c) strain in the t-bars.(Continued) 
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Fig.11: (Continued) 
 

-0.0024

-0
.0

0
2
4

-0
.0

0
2
4

-0.0022-0.0022

-0
.0

0
2
2

-0.002-0.002

-0
.0

0
2

-0
.0

0
2

-0.0018-0.0018

-0
.0

0
1
8

-0.0016

-0.0016

-0
.0

0
1
6

-0.0014

-0
.00

14

ro
l

ro
t

 

 

0.004 0.0076 0.0112 0.0148 0.0184 0.022 0.0256 0.0292 0.0328 0.0364 0.04
0.004

0.0076

0.0112

0.0148

0.0184

0.022

0.0256

0.0292

0.0328

0.0364

0.04

-2.4

-2.3

-2.2

-2.1

-2

-1.9

-1.8

-1.7

-1.6

-1.5

-1.4
x 10

-3

(a) 

0
.0

0
0

5

0.00050.0005

0
.0

0
0

5

0
.0

0
1

0.001

0
.0

0
1

0
.0

0
1

5
0
.0

0
1

5

0
.0

0
1

5

0
.0

0
2

0
.0

0
2

0
.0

0
2

5

0
.0

0
2

5

0
.0

0
3

0
.0

0
3

0
.0

0
3
5

0
.0

0
4

ro
l

ro
t

 

 

0.004 0.0076 0.0112 0.0148 0.0184 0.022 0.0256 0.0292 0.0328 0.0364 0.04
0.004

0.0076

0.0112

0.0148

0.0184

0.022

0.0256

0.0292

0.0328

0.0364

0.04

0.5

1

1.5

2

2.5

3

3.5

4
x 10

-3

0.004
0.0076

0.0112
0.0148

0.0184
0.022

0.0256
0.0292

0.0328
0.0364

0.04

0.004
0.0076

0.0112
0.0148

0.0184
0.022

0.0256
0.0292

0.0328
0.0364

0.04

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

x 10
-3

 

ro
l

ro
t

 

e
p
s

l

0.5

1

1.5

2

2.5

3

3.5

4

x 10
-3

(b) 

Fig.12: Strain variation through the mesh in Case study 2 – Load case 3: a) concrete compressive strain, b) strain in the l-bars 

and c) strain in the t-bars.(Continued) 
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6. Concluding Remarks 

 

This paper proposes a novel technique for solving the 

equations of the rotating crack model in the MCFT. The 

solution procedure is accelerated by expressing the 

equations in closed-form. The analysis results are obtained 

from the final values of the stresses without the need for 

incremental loading steps. The equations for the rotating 

crack model are expressed in terms of one unknown, 

compressive strain in concrete, assuming linear elastic 

behaviour for the concrete and reinforcement.  

A design procedure is presented which minimises the 

area of reinforcement required to satisfy the design 

constraints inside a membrane element. The strain 

compatibility equations are satisfied as well as the stress 

compatibility relations. The design takes account of the 

effects of tension stiffening and the nonlinear stress-strain 

response of steel and concrete. The design constraints are 

used to limit the deformations and stresses inside the 

element. It allows the designer to use the procedure for 

both the serviceability and ultimate limit states. To avoid 

concrete crushing, the average compressive stress in 

concrete is limited in terms of its principal compressive 

strain to avoid issues arising from softening. Crack widths 

are limited by controlling the maximum principal tensile 

strain in the concrete. In addition, there are limits on the 

average strains and maximum stresses in the reinforcing 

bars. For a practical design the values of reinforcement 

ratios should be in the valid domain proposed in structural 

codes, which is included in the proposed procedure as well. 

The design procedure has been verified successfully for 

various loading conditions and material properties. Data 

visualisation of the results validates the performance of the 

procedure. 
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