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Abstract: 

 

This study examines the capability of the Relevance Vector Machine (RVM) and 

Multivariate Adaptive Regression Spline (MARS) for prediction of ultimate capacity of 

driven piles and drilled shafts. RVM is a sparse method for training generalized linear 

models, while MARS technique is basically an adaptive piece-wise regression approach. In 

this paper, pile capacity prediction models are developed based on data obtained from the 

literature and comprise in-situ pile loading tests and Cone Penetration Test (CPT) results. 

Equations are derived from the developed RVM and MARS models, and the prediction 

results are compared with those obtained from available CPT-based methods. Sensitivity 

has been carried out to determine the effect of each input parameter.   This study confirms 

that the developed RVM and MARS models predict ultimate capacity of driven piles and 

drilled shafts reasonably well, and outperform the available methods. 

 

1. Introduction 

 

Piles have  been  used for decades as one of the most 

important types of structural foundations. Consequently, the 

determination of an accurate axial capacity of pile foundations 

is an important task in geotechnical engineering. Numerous 

traditional methods have been proposed in the geotechnical 

literature to predict the axial capacity of driven piles and 

drilled shafts; however, most available methods have failed 

to achieve consistent success. Among the available 

methods, the cone penetration test (CPT) based models 

have been shown to give better predictions in many 

situations.  This can be attributed to the fact that CPT-

based methods have been developed in accordance with the 

CPT results, which have been found to yield more reliable 

soil properties; hence, more accurate axial pile capacity 

predictions.  In recent years, artificial neural networks 

(ANNs), which is one of the most emerging soft computing 

techniques, have been used with some degree of success for  
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axial capacity prediction of pile .This study employs the 

Relevance Vector Machine(RVM) and Multivariate 

Adaptive Regression Spline (MARS) for prediction of axial 

capacity of driven piles and drilled shafts using data of in-

situ pile load tests and Cone Penetration Test(CPT) results. 

RVM is a statistical learning method proposed by Tipping 

(2000)[5] and represents a new approach to regression that 

has recently attracted a great deal of interest in the machine 

learning community as it is highly insensitive to the curse 

of dimensionality. MARS, on the other hand, is a non-

parametric method developed by Friedman (1991)[6] that 

can handle high-dimensional problem efficiently and is 

considered to be a modern methodology from statistical 

learning and performs well for both classification and 

regression.  The advantage of RVM and MARS over ANNs 

is their ability to provide well-structured mathematical 

expressions between the model inputs and the 

corresponding outputs. The current study has the following 

aims: 

1. To examine the feasibility of using the RVM and 

MARS for predicting axial capacity of driven piles and 

drilled shafts;  
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2. To derive mathematical equations for determination of 

axial capacity of driven piles and drilled shafts that 

facilitate the use of the RVM and MARS models; and 

3. To carry out a comparative study between the 

developed RVM and MARS models with other available 

CPT-based methods of axial capacity predictions. 

 

2. Details of RVM Models for Pile Capacity 

Prediction 

 

In RVM, the prediction y(x, w) is expressed as a linear 

combination of basis functions (x) and is written as 

follows: 
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where: A is the actual outputs, x is the inputs, w is the 

weights and N is the number of basis functions. For driven 

piles, 79 load tests that have been collected from the 

literature by Shahin (2010)[2] are used for the RVM model 

calibration and verification. The load tests include 

compression and tension loading conducted on steel and 

concrete piles driven statically (jacked-in) into the ground. 

The driven piles used had different shapes (i.e. circular, 

square and hexagonal) and ranged in diameter between 250 

and 900 mm, with embedment lengths between 5.5 and 

41.8 m. The RVM model input variables used include the 

pile equivalent diameter (Deq = pile perimeter/π), 

embedment length (L), weighted average cone point 

resistance over pile tip failure zone (
tipcq 

), weighted 

average cone point resistance over pile length (
shaftcq 

), 

weighted average cone sleeve friction over pile length ( sf

) and pile material which is represented by the numeric 

values “1” for steel piles and “2” for concrete piles. The 

single output of the RVM model is the ultimate pile 

capacity (Qp). So, 

  2or  1 , , , , , sshaftctipceq fqqLDx   and 

 pQA  . It should be noted that the following aspects 

are applied to the input and output variables used in the 

RVM driven piles model: 

 The ultimate pile capacity (Qp) is taken to be at the 

plunging failure for the well-defined failure cases, and at 

80%-criterion [7] for the cases that failure load is not 

clearly defined, as suggested by Eslami (1996)[8].   

 The pile tip failure zone over which is calculated 

is taken in accordance with Eslami (1996)[8], in which 

when the pile toe is located in non-homogeneous soil of 

dense strata with a weak layer above, the influence zone 

extends to 4 D
eq

below and 8 D
eq

 above pile toe.  Also, in 

non-homogeneous soil, when the pile toe is located in weak 

strata with a dense layer above, the influence zone extends 

to 4 D
eq

 below and 2 D
eq

 above pile toe.  In homogeneous 

soil, however, the influence zone extends to 4 D
eq

 below 

and 4 D
eq

 above pile toe.   

For drilled shafts, 88 load tests that have been collected 

from the literature by Shahin (2010)[2] are used for the 

RVM model calibration and verification. The load tests 

were conducted on straight and belled concrete shafts and 

included compression loading (for straight and belled 

shafts) and tension loading (for straight shafts only).  The 

drilled shafts used had stem diameters ranging from 305 to 

1798 mm, with embedment lengths from 4.5 to 27.4 m.  

The RVM model input variables used include the shaft 

stem diameter (Dstem), shaft base diameter (Dbase), 

embedment length (L), weighted average cone point 

resistance over shaft base failure zone (
basecq 

), weighted 

average cone point resistance over shaft length (
shaftcq 

) 

and weighted average cone sleeve friction over shaft length 

(
dsf ). The single output is the ultimate capacity of dilled 

shafts (Qs). So,  sshaftcbasecbasestem f ,q ,q ,L,D ,Dx   

and  sQA  .  It should be noted that the following issues 

are applied to the input and output variables used in the 

RVM drilled shafts model: 

 The ultimate bearing capacity (Qs) for drilled shafts 

under compression is taken as the axial load measured at a 

displacement equal to 5% of shaft base diameter plus the 

elastic compression of the shaft (i.e. PL/Ea, where: P is the 

applied load, L is the shaft length, a is the shaft cross-

sectional area and E is the shaft elastic modulus).  On the 

other hand, (Qs) for drilled shafts under tension is defined 

as the axial load at 12 mm (0.5") of displacement.  The 

above criteria for determination of ultimate load are as 

suggested by Alsamman (1995)[9] and recommended by 

Reese and O’Neill (1988)[10].   

 The shaft base failure zone over which  is taken 

in accordance with Alsamman (1995)[9]to be equal to one 

diameter depth beneath the shaft base.   

The RVM modeling technique uses the conditional 

distribution of the actual output as a zero-mean Gaussian 

with variance σ2, so that:  

 

    2 ,w;xyAxAp mmm 
        

(2) 

 

The likelihood of the complete data set is written as 

follows:  

tipcq 

basecq 
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iscalled the design matrix and K(xi,xN) is a kernel 

function.  The radial basis function 
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, where  is the width of 

radial basis function) is used as the kernel function, and the 

design value of  is determined by trial-and-error. The 

maximum likelihood estimation of w and σ2 from Equation 

(3) can cause over-fitting, therefore, Tipping (2001)[11] 

recommended imposition of some prior constraints by 

adding a complexity penalty to the likelihood of the error 

function. An explicit zero-mean Gaussian prior probability 

distribution over the weights, w, with diagonal covariance 

of is proposed as follows: 
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(4) 

 

where: isa vector of N+1 hyperparameters.  

Consequently, using Baye’s rule, the posterior over all 

unknowns could be computed given the defined non-

informative prior distribution, as follows: 
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Full analytical solution of the integral Equation (5) is 

obdurate the decomposition of the posterior according to 
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 is used 

to facilitate the solution [11]. The posterior distribution 

over the weights is thus can be given by: 
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where the posterior covariance and mean are given, 

respectively, as follows: 

 

  12 
 CΦTΦσ   

yTΦσμ  2
   (7) 

 

where:  Nα,...,α,αdiagC 10 . Therefore, learning 

becomes a search for the hyperparameter posterior most 

probable, i.e. the maximization of  

       222 σpαpσ,αypyσα,p   

with respect to and 
For uniform hyperpriors over  

and one needs only to maximize the term  2σ,αyp , 

as follows: 
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Maximization of this quantity is known as the type II 

maximum likelihood method [12,13] or the “evidence for 

hyperparameter” [14]. The perparameter estimation is 

carried out in iterative formulae, e.g., gradient descent on 

the objective function [11]. The outcome of this 

optimization is that many elements of  go to infinity such 

that w will have only a few non-zero weights that will be 

considered as relevant vectors. The relevance vector can be 

viewed as counterparts to support vectors in Support 

Vector Machine (SVM). Therefore the resulting model 

enjoys the properties of SVM as well as provides estimates 

to the uncertainty bounds.  In this study, RVM is 

implemented using the MATLAB software. 

For developing the RVM models, the available data are 

divided into the following two groups: (i) training set for 

model calibration, which comprises 55 out of 79 data 

records for driven piles and 61 out of 88 for drilled shafts; 

and (ii) testing set for verification of model performance. 

The testing set had 24 data records for driven piles and 27 

data records for drilled shafts.  Before training, all data are 

normalized between 0.0 and 1.0 using the following 

equation:  

 
 minmax

min

dd

dd
dnormalized




  (12) 

where: d is the value of any input/output variable, dmin= 

minimum value of that input/output variable within the 

entire dataset, dmax= maximum value of that input/output 

variable within entire dataset and dnormalized = normalized 

value of that input/output variable.  

In this study, a sensitivity analysis has been done to 

extract the cause and effect relationship between the inputs 

and outputs of the RVM model. The basic idea is that each 
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input of the model is offset slightly and the corresponding 

change in the output is reported. The procedure has been 

taken from the work of Liong et al (2000). According to 

Liong et al (2000), the sensitivity(S) of each input 

parameter has been calculated by the following formula 

 

100
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ouputin  change %

N

1
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(13) 

 

Where N is the number of data points. The analysis has 

been carried outon the trained model by varying each of 

input parameter, one at a time, at a constant rate of 20%.   

 

3. Details of Mars Models for Pile Capacity 

Prediction    

 

According to MARS, which is developed by Friedman 

(1991)[6], the relation between an input (x) and the 

corresponding output (y) can be written as follows: 
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where: a0 is the coefficient of the constant basis 

function, Bm(x) is the mth basis function and M is the 

number of basis functions. The basis functions in MARS 

are defined as one single spline function or the product of 

two (or more) spline functions for different predictors. For 

driven piles,   2or  1 , , , , , sshaftctipceq fqqLDx   

and  pQy  , and for drilled shafts, 

 sshaftcbasecbasestem f ,q ,q ,L,D ,Dx   and  sQy 

.  The spline function consists of two segments, i.e. 

truncated functions of the left-hand side of Equation (14) 

and right-hand side of Equation (15) separated from each 

other by a so-called knot location [6], as follows:  
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where: t is the knot location and  txbq 
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are the spline functions.  In general, MARS contains the 

following three steps: 

 Constructive phase; 

 Pruning phase; and 

 Selection of optimum MARS.  

In the constructive phase, the basis functions are 

introduced to define Equation (9) and the selection of these 

basis functions is carried out using the generalized cross-

validation (GCV) statistic. The value of GCV is determined 

by the following equation: 
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where: n is the number of data objects, yi is the response 

value for object i, 
iŷ is the predicted response value for 

object i and C(M) is a penalty factor. The value of C(M) is 

determined from the following expression: 

 

  dMMMC 
 

(18) 

 

where: d is a cost penalty factor for each basis function 

optimization. Over-fitting can occur due to many basis 

functions and to prevent over-fitting, some basis functions 

are deleted in the pruning phase. In the third step, the 

optimum MARS model is selected.  

It should be noted that for model calibration and 

verification using MARS, the same training and testing 

data sets previously used for the RVM modeling are 

utilized and MARS is implemented using the MATLAB 

software.  Furthermore, the same normalization technique 

and sensitivity analysis that is used by RVM for scaling the 

model input and outputs is also adopted for MARS.   

 

4. Results and Discussion   
 

The coefficient of correlation (R) has been adopted to 

assess the performance of the RVM and MARS models. 

The value of R is determined using the following equation:  
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where: Qpai and Qpi are, respectively, the actual and 

predicted values of pile capacity,  
pa

Q  and 
pe

Q  are, 

respectively, the mean of actual and predicted values of 

pile capacity corresponding to n data records. Good model 

performance should have a value of R close to one.  For the 

RVM driven piles model, the design value of  is found to 

be equal to 0.6 and the model produced 10 relevance 

otherwise  

 if x>t           (16) 

otherwise  

 if x>t           (15) 
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vectors for the design value of . The performance of the 

model in the training and testing sets is depicted in Figure 

1.  

 
Fig.1: Performance of the RVM model for driven piles. 

 

It can be seen that the scattering of data around the line 

of equality indicates good correlation between the actual 

and predicted pile capacities, with R = 0.940 and 0.929 for 

the training and testing datasets, respectively. This 

demonstrates that the developed RVM driven piles model 

has the ability to predict the axial pile capacity reasonably 

well. The following equation has been developed for 

capacity prediction of driven piles, Qp:  
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The values of w in Equation (19) are given in Figure 2 

and the variance of the predicted Qp in the training and 

testing datasets are shown in Figures 3 and 4, respectively.   

For drilled shafts, the RVM gives best performance when 

= 0.39 and the model performance in the training and 

testing datasets is depicted in Figure 5.  It can be observed 

that the model performs reasonably well with high values 

of R = 0.983 and 0.982 in the training and testing datasets, 

respectively.   

 

 
 

Fig.2: Values of w for the RVM driven piles model. 

 

 
 

Fig.3: Variance of the training dataset for the RVM driven piles 

model. 

 

 
 

Fig.4: Variance of the testing dataset for the RVM driven piles 

model 

 

 

The developed RVM gives the following equation for 

prediction of the pile capacity of drilled shafts, Qs:    
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Fig.5: Performance of the RVM drilled shafts model. 
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The values of w in Equation (20) are given in Figure 6 

and the variance of the predicted Qsin the training and 

testing datasets are illustrated in Figures 7 and 8, 

respectively. 

 

 
 

Fig.6: Values of w for the RVM drilled shafts model. 

 

 

 
 

Fig.7: Variance of the training dataset for the RVM drilled shafts 

model. 

 

The performance of MARS models for driven piles and 

drilled shafts are presented and discussed in this section. 

For driven piles, MARS model is developed using 20 basis 

functions and the final optimum model consists of nine 

basis functions. The different basis functions and their 

corresponding equations are listed in Table 1, and the final 

equation of the optimum MARS model is given as follows:  

 

9*889.18*558.67*018.356*383.945*016.0

4*025.53*666.02*064.01*45.1103.0

BFBFBFBFBF

BFBFBFBFQp



                                                                                                                           

                                                                                    (22) 

 

The performance of MARS driven piles model in the 

training and testing datasets is shown in Figure 9, which 

indicates that MARS has successfully predicted Qpwith 

high values of R = 0.958 and 0.955 in the training and 

testing datasets, respectively.   

For drilled shafts, MARS model used 12 basis functions 

to predict Qs and the final optimum model contains eight 

basis functions (see Table 2), and the final optimum 

equation of MARS model for drilled shafts is given as 

follows:  

 

8*001.67*409.46*487.05*124.30

4*332.193*757.92*701.01*937.0056.0

BFBFBFBF

BFBFBFBFQs





 

The model performance in the training and testing 

datasets are depicted in Figure 10, which confirms that the 

developed MARS drilled shafts model has predicted Qs 

reasonably well. 

 

 
 

Fig.9: Performance of MARS model for driven piles. 

 

 

 
 

Fig.10: Performance of MARS model for drilled shafts. 

 

 

5. Comparison of Rvm and Mars Models with 

Available Cpt-Based Methods 

 

To examine the accuracy of the developed RVM and 

MARS driven piles and drilled shafts models against 

available methods, a comparative study has been carried 

out. For driven piles, the RVM and MARS are compared 

with the European method [15]; LCPC method; the method 
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proposed by Eslami and Fellenius (1997)[16] and the 

recent ANN method developed by Shahin (2010)[2]. For 

drilled shafts, the RVM and MARS models are compared 

with the Schmertmann (1978)[17] method; LCPC method 

[18]; Alsamman (1995)[9] method and the recent ANN 

model developed Shahin (20102)[2]. The comparison is 

carried out for the testing dataset only (which has not been 

used for calibration of the RVM and MARS models) and is 

based on the in terms of Root Mean Square Error (RMSE) 

and Mean Absolute Error (MAE).  The values of RMSE 

and MAE are computed using the following two equations:  
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Fig.11: Bar charts of RMSE for different models of driven piles. 

 

 

 
 

Fig.12: Bar charts of RAE for different models of driven piles. 

 

Figures 11 and 12 show bar charts of RMSE and MAE 

of the different models used for comparison of driven piles 

methods, whereas Figures 13 and 14 show bar charts of 

RMSE and MAE of the different models used for 

comparison of drilled shafts methods.  It can be observed 

from all figures that MARS models (for both driven piles 

and drilled shafts) outperform the other methods with 

minimum RMSE and MAE values. On the other hand, it 

can also be observed that the RVM models represent the 

second best models (after MARS models) for predicting the 

axial capacity of both driven piles and drilled shafts.    

 

 
 

Fig.13: Bar charts of RMSE for different models of drilled shafts. 

 

 

 
 

Fig.14: Bar charts of MAE for different models of drilled shafts. 

 

 

 
 

Fig.15: Sensitivity analysis of input parameters for driven piles. 
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Fig.16: Sensitivity analysis of input parameters for drilled shaft. 
 

The results of sensitivity analysis have been shown in 

figures 15 and 16. For driven piles, figure 15 shows that 

shaftcq 
 has maximum effect on the predicted Qp. For drilled 

shaft, it clear from figure 16 that 
sf has maximum effect on 

the predicted Qs.  

 

6. Summary and Conclusion 

 

This paper describes the use of RVM and MARS for 

predicting the ultimate capacity of driven piles and drilled 

shafts. A series of in-situ pile load tests and CPT results 

collected from the literature were used for development of 

the RVM and MARS models. This article shows the effect 

of each input parameters on the predicted Qp and Qs.  The 

predictive ability of the developed RVM and MARS 

models was examined by comparing their predictions with 

those obtained from experiments as well as available CPT-

based models.  Tractable design equations based on the 

RVM and MARS models were derived and can be readily 

used by practicing engineers.  

The results indicate that the RVM and MARS models 

were capable of accurately predicting the ultimate capacity 

of driven piles and drilled shafts. For the RVM models, the 

coefficients of correlation, R, between the actual and 

predicted driven pile capacities were 0.940 and 0.929 in the 

calibration (training) and verification (testing) sets, 

respectively, whereas the drilled shafts models had R equal 

to 0.983 and 0.982 for the calibration and verification sets, 

respectively.  For MARS models, R for driven piles were 

equal to 0.958 and 0.955 in the calibration and verification 

sets, respectively, whereas the drilled shafts models had R 

of 0.995 and 0.987 in the calibration and verification sets, 

respectively. The above results indicate that the RVM and 

MARS models have the capability of predicting the 

ultimate capacity of driven piles and drilled shafts 

reasonably well.  The comparison results of the RVM and 

MARS models with available CPT-based methods indicate 

that the RVM and MARS models outperform available 

CPT-based methods; however, the performance of MARS 

models is slightly better than that of the RVM models as 

they gave minimal RMSE and MAE for both driven piles 

and drilled shafts. 

 

Table.1: Basis functions and their corresponding equations for driven 

piles. 

 

Basis Function Equation 

BF1  398000 .eqD,.max   

BF2  eqD.,.max 398000  

BF3  250000 .L,.max   

BF4  36500 .
s

f,max   

BF5  
s

f.,max 36500  

BF6  250004 .L,max*BF   

BF7  L.,max*BF 250004  

BF8  15003 .q,max*BF c   

BF9  cq.,max*BF 15003  

 

 

Table. 2: Basis functions and their corresponding equations for drilled 

shaft. 

 
Basis 

Function 

Equation 

BF1  172000 .L,.max   

BF2  548.0,0.0max 
s

f  

BF3    172000548000 .L,.max*
s

f.,.max   

BF4  40300003 .
basec

q,.max*BF 


 

BF5  
basec

q.,.max*BF


4030003  

BF6  178000 .D,.max base   

BF7  2030002 .D,.max*BF base   

BF8  baseD,.max*BF 203002  
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