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Abstract: 
 

This paper presents a generalized numerical method to evaluate element stiffness matrices 

needed for the free vibration and stability analyses of non-prismatic columns resting on one- 

or two-parameter elastic foundations and subjected to variable axial load. For this purpose, 

power series approximation is used to solve the fourth–order differential equation of non-

prismatic columns with variable geometric parameters. Then, the shape functions are 

obtained exactly by deriving the deformation shape of the column as power series form.  

Finally, the element stiffness matrices are determined by means of the principle of virtual 

work along the columns axis. In order to demonstrate the accuracy and the efficiency of 

presented method, several numerical examples including in the free-vibration and buckling 

analysis of non-prismatic columns, portal frame, and gable frame are presented and obtained 

results compared with the results of other available numerical and theoretical approaches. 

The method can be applied for the buckling load and natural frequencies computation of 

uniform members as well as non- prismatic members. 

D 

1. Introduction 

 

Members with variable cross section are widely used as 

columns in many engineering structures such as high-rise 

building, aeronautical structures, cranes and other 

application fields. In order to increase buckling strength 

and reduce vibration effects, appropriate distribution of 

weight has to be found in order to utilize the structural 

material more efficiently. Vibration and stability analysis 

of non-prismatic columns has been studied by several 

researchers because of its relevance to aeronautical, civil 

and architectural engineering. Closed form solutions of the 

fourth-order differential equation governing the stability or 

vibration behaviour of tapered beams are often difficult, 

and exist only for limited cases. They are available and 

extensively discussed in reference books [1-3]. Many 

numerical techniques such as finite element method, finite 

difference method and power series approach are used to  
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solve the vibration and stability of these structures .Some 

of them are based on exact formulations [4-7]. The 

dynamic stiffness matrices for non-uniform cross-section 

beams were derived by Banerjee and Williams [4] using 

Bessel’s functions. By means of the flexibility–stiffness 

transformation approach, the exact stiffness matrix of a 

non-uniform beam was derived by Frieman and Kosmatka 

[5]. The power series method was adopted by Al-Sadder 

[6] in deriving the exact stability functions of beam-column 

tapered elements. 

A finite element model is proposed in Karabalis [7] for 

dynamic and stability analysis of plane tapered beams with 

variable depth. It is on an exact flexural and axial stiffness 

matrix. Some other models are investigated for the stability 

and the vibration of beams with variable cross sections [8-

10]. These models are based on approximate formulations. 

These models are a good compromise between the 

analytical procedures and numerical methods and are 

efficient tools in design. Based on the energy method, the 

modified vibration mode shapes were used by Rahai [8] in 

buckling analysis. Jategaonkar [9] adopted the Galerkin’s 

method in vibration behaviour of a beam with varying 

section properties. Saffari [10] adopted the effective length 
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method in the stability of plane and gabled frames with variable cross sections. 

The study of stability and vibration analyses of beam-

columns resting on elastic foundations is essential in many 

problems related to soil-structure interaction (the 

foundation of buildings, pipelines embedded in soil, 

highway pavements, etc.). The Winkler hypothesis is the 

most used mechanical model in the solution of these 

problems. In this model, the elastic foundation is 

considered as limiting case of an infinitely dense 

distribution of linear springs.  Closed form solutions of 

uniform beam-columns resting on this type of elastic 

foundation were studied in reference books [2-3]. A 

modified Valsov model was applied to free vibration 

analysis of beam resting on elastic foundation by Ayvaz 

[11]. However, the modeling of the soil using Winkler’s 

theory was considered inadequate in several problems as 

this model overlooks the soil cohesion. In order to improve 

this weakness, various two-parameter elastic foundation 

models were developed. In these models, interactions 

between springs were considered. For buckling or free-

vibration analysis of beams on elastic foundations, 

Eisenberger [12] and Matsunaga [13] proposed a method 

based on power series expansion of displacement 

components. Static or dynamic stiffness matrices of non-

uniform members resting on variable elastic foundations 

were derived by Girgin [14]. This method was performed 

by means of a generalized numerical method which is 

based on the well-known Mohr method. The stiffness 

matrices for beams on three parameter elastic foundation 

are developed on the basis of exact solution of the 

governing differential equation by Avramidis [15]. 

The stability of thin-walled tapered beams with arbitrary 

cross sections by means of the power series method was 

investigated in Asgarian [16]. The previous method has 

been extended to stability and free vibration behaviour for 

beams with non-symmetric cross-sections and arbitrary 

boundary conditions in Asgarian [17]. In these studies only 

rigid supports are considered. 

The aim of this study is to determine the stiffness 

matrices for the critical buckling loads and free vibration 

analysis of non-prismatic column members resting on one- 

or two-parameter elastic foundations and subjected to 

variable axial forces based on power series expansions. The 

important points presented are summarized as follows: 

1. The power series expansions are used to solve the 

fourth-order equilibrium differential equation of non-

prismatic column members with variable geometric 

parameters. In this regard, it is assumed that the functions 

which describe the beam's variable parameters such as: 

flexural rigidity, mass and loads can be expanded into 

power series form. Explicit expressions for deformation 

shape components are determined based on aforementioned 

method. 

2. The terms of stiffness and mass matrices can be 

determined by means of the shape functions resulting from 

its nodal displacements and the principle of virtual work 

along the column axis. 

   Several numerical examples are presented in order to 

measure the accuracy and verify the validity of proposed 

method, and the results compared with the results of other 

available investigations. The main advantages of this 

method are that the proposed method can be applied in 

various form of non-prismatic member. Moreover, this 

method does not require any complex and time consuming 

analysis. 

 

2. Derivation and Formulation of Basic Equations 

 

In the study, a non-prismatic column element of length 

L with variable bending rigidity EI(x) subjected to static 

axial load N(x) is considered (Fig. 1). The beam stays on 

two-parameter elastic foundations. The first elastic series is 

translational with variable elastic constant K(x). The 

second is rotational with related stiffness K1(x). In plane 

bending, the element has two degrees of freedom at each 

node: vertical translations in the nodal y direction and 

rotation about z-axis (the two nodes by which the finite 

element can be assembled into structure are located at its 

ends) (Fig.2). The displacement of the column element is 

related to its four Degrees Of Freedom (DOF) by: 

 
4

1

( , ) ( ) ( )j j

j

y x t y t x  


                       (1)     

                      

The terms of the element mass and stiffness matrices can 

be found from the derivatives of the interpolation 

functions. Where the function )(xj  defines the 

displacement of the element from applying unit translation 

or rotation, at each of the four degrees of freedom, while 

constraining the other three nodal displacements are shown 

in Fig.3a-d. Thus )(xj  satisfies the following boundary 

conditions as follows: 

 

1 1 1 11              (0) 1;    (0) ( ) ( ) 0j L L                (2-a)                               

2 2 2 22              (0) 1;    (0) ( ) ( ) 0j L L               (2-b)                                

3 3 3 33              ( ) 1;    (0) (0) ( ) 0j L L               (2-c)                                  

4 4 4 44              ( ) 1;    (0) (0) ( ) 0j L L                (2-d) 

                                   

These shape functions could be taken any arbitrary 

shapes which satisfy the boundary conditions of element 

and internal continuity requirements. With these four 

interpolation functions, the exact deflected shape of the 
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column element can be expressed in terms of its nodal 

displacements. They can be obtained for a non-prismatic 

column as illustrated below. Neglecting shear deformation, 

the differential flexural equilibrium equation with variable 

coefficients for a column resting on two parameter elastic 

foundations and loaded by variable axial force is: 

 

2 2

12 2
( ) ( ( ) ( ))

( ) ( ) 0

d d y d dy
EI x N x K x

dx dx dx dx

K x y x

   
    

  

 

                (3)                                     

 

In the last equation, due to presence of non-prismatic 

elements, all variable properties including the moment of 

inertia of column's cross -section  I(x) , the axial load N(x) , 

the function of second parameter of two-parameter elastic 

foundation K1(x), Winkler type foundation modulus K(x) 

can be presented in power series form as follows :  
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Fig. 1: Non-prismatic column on a two-parameter elastic 

foundation, subjected to variable axial force. 

 

 

 
 

Fig. 2: Degrees of freedom for a column element in global 

coordinate system. 

 

Introducing a new non-dimensional variable 
L

x
 , Eq. 

(4) can be written as: 
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Substituting Eq. (4) and (5) into Eq. (3) yields to 

following differential equilibrium equation: 
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Fig. 3: Interpolation functions. 

 

The general solution of (Eq. (6)) can be presented in the 

following form of power series in terms of the variable 

0 : 
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Furthermore, introducing new variables:  

 
* * * *

1 1     ,      ,      ,i i i i

i i i i i i i iI I L N N L K K L K K L    (10) 

 

And substituting Eq. (7)-(10) into Eq. (6) the following 

equation can be found: 
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By multiplying of the two series in each terms of equation 

(11), the following expression can be obtained: 
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Or 
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To satisfy last expression for every value of  , one 

must have the following recurrence formula about the term 

4jb  : 
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With the recurrence formula, the solution of Eq. (3) 

could be obtained explicitly in terms of the four constants 

( 3210 ,,, bbbb ).  The general solution of Eq. (3) can be 

written in the following form: 

 

)()()()()( 33221100  ybybybybY 
                

(15)                                                               

 

In which )3,2,1,0( iyi
are the fundamental solutions 

of Eq. (13). The first few terms of 
iy  are listed as 

examples in Appendix A. Knowing that the first four 

coefficients (
3210 ,,, bbbb ) are functions of the 

displacements DOF. Thus, the displacement perpendicular 

to the beam’s axis )(Y can be obtained from the right and 

left ends boundary conditions of element. The equivalent 

shape functions corresponding to the four sets boundary 

conditions of Eq. 2 can be derived as follows:   
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The illustrated shape functions in Fig. (3 a-d) and the 

principle of internal virtual work can be used in 

formulating the element stiffness matrices of non-prismatic 
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members including geometrical and generalized stiffness 

matrices needed for stability analysis. In the case of the 

column resting on two parameter elastic foundations, the 

terms of these matrices are the following: 

1 1
*

1
0 0
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( ) ( ) ( ) ( ) ( ) ( )

   ( ) ( ) ( )

ij i j i j
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Where *

ijK  is the first-order elastic stiffness matrix and 

ijGK  is the geometric stiffness matrix, which accounts for 

the effect of the variable axial force (N) on the bending 

stiffness of the member. 

 By applying the principle of virtual displacement along 

the column element with distributed mass, the mass matrix 

terms are given by: 

 dmm jiij )()()(
1

0                       (22)                                                                                       
 

The structure stiffness and mass matrices can be 

obtained by assembling each element stiffness and mass 

matrices according to its nodal displacement. The process 

of assemblage is described in detail in most stability 

analysis textbook [1-3]. The critical buckling load and 

natural frequencies can be derived by solving the 

eigenvalue problems of following equations. In buckling 

analysis, we have: 

0)( *   GKK                      (23)                                                                  

  are the eigenvalues and   are the related 

eigenvectors. Under compressive loads, they lead to 

buckling loads and related eigenmodes.  

For the vibration, the eigenvalue problem is put: 

0)( *  MK                                   (24)                                                                                                          

Here   is related the eigenpulsation of the structure 

( 2  ).   are the related vibration eigenmode.  

It is well known that for a system with n DOF, there exist n 

buckling modes and n vibration modes, but in practice only 

the lower ones are of interest. A variable iterative algorithm 

is shown in Fig. 4. It is used for computer applications of 

the method. 

 

3. Numerical Results  

 

   The aim of this section is to investigate the accuracy and 

efficiency of proposed method. In order to achieve this 

goal, five comparative examples were made between the 

natural frequencies and the critical buckling loads of the 

columns and frames composed of prismatic and non-

prismatic members provided by the numerical results of the 

aforementioned method , available numerical or analytical 

solutions and finite element method by means of Ansys 

software [18]. 

 

3.1 Example 1 

 

In this example, the stability analysis of three non-

prismatic columns, as shown in Fig. 5, with different 

boundary conditions (fixed-free, hinged-hinged and fixed-

hinged) was investigated. Each column had a rectangular 

cross-section with the depth of the column varying 

parabolic along its length, and subjected to a compressive 

axial force P. The modulus of elasticity of the material was 

assumed )(25 GPa  
and the distribution of moment of 

inertia  I  is described as follows [6]: 

                                                                            

    2

11 LCII A                        (25)
 

Where  

B

A

d

d
DRand

LDR

DR
C 


     

.

1
21

                                          (26)   

                                               

The obtained results have been compared with those 

obtained by FEM method. To develop a model of non-

prismatic column under buckling analysis, the finite 

element program ANSYS [18] was used. 

The abovementioned column has been modeled using 

BEAM54 of ANSYS software. BEAM54 is a 1D beam 

element with tension, compression, and bending 

capabilities. The element has three degrees of freedom at 

each node: translations in the nodal x and y directions and 

rotation about the nodal z-axis. This element allows a 

different unsymmetrical geometry at each end and permits 

the end nodes to be offset from the centroidal axis of the 

beam. To obtain almost exact solutions in this model, the 

column is regarded to be composed of 20 tapered elements. 

Table 1 presents the critical axial load 

parameter cr computed by the present method and 

compared to those obtained by finite element method using 

Ansys software [18]. This parameter is described as: 

 

2

2

L

EI
P B

crcr


                       (27) 

 

According to Table 1, it can be concluded the 

satisfactory results for engineering requirements can be 

reached through 3-4 segments and 20 terms of power series 

by using proposed method. 
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Fig. 4: Iterative algorithms used for free-vibration and buckling 

analysis of non-prismatic columns on a two-parameter elastic 

foundation. 

 

 

 
 

Fig. 5: Non-prismatic columns with different boundary conditions 

(example 1): (a) Fixed-free; (b) hinged-hinged; (c) fixed-hinged 

 

 

Table 1: Effect of number of elements (n) and power series 

number (N) on buckling load parameter (
cr ) for non-prismatic 

column with different boundary conditions. (Example 1) 

 

 

 

3.2 Example 2 

 

Present method can be applied for the buckling load 

computation and vibration analysis of prismatic members 

as well as non-prismatic members. So to check the 

accuracy and validity of proposed method, three cases 

involved instability and free vibration analyses of a 

cantilever column with constants cross section are 

presented in this example. These cases are on the 

estimation of Euler buckling load (Pcr) (Case a), the natural 

frequency under free-vibration (Case b) and the stability 

analysis (Pcr) of a column resting on Winkler type elastic 

foundation K=0.4 (Case c). 

Fig. 6 provides a graphic depiction of the variation of 

the relative error with number of segments. After observing 

the results presented in the Fig.6, the following convulsions 

can be stated: 

(1) There is an excellent agreement between the 

natural frequency and critical elastic buckling 

loads obtained by present study and those 

computed by using Ansys software [18], and exact 

value by using Euler equation. 

(2) The buckling load and natural frequency can be 

estimated below the acceptable error rate (1%) 

even by using 4 numbers of segments. 

(3) Relative errors ( ) diminished progressively 

under 0.1%, as the number of segments increased 

to 4-10.  

(4) It can be concluded not to be required to take 

more than 5 segments for high accurate solutions 

involved in stability and free-vibration analyses. 
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Fig. 6:  Relative errors (%) versus the number of segments (n) 

variation in the buckling and free-vibration analysis of prismatic 

column. 

 

 

3.3 Example 3 

 

The examples in Table 2 are presented to show the 

accuracy and the exactnesses of presented study to obtain 

the critical buckling load of different cases.  

Case 1 represents a cantilever tapered column resting on 

Winkler type elastic foundation. The column had a 

rectangular cross-section with the depth of the column 

varying linear along its length, and subjected to uniformly 

distribute axial load W. The length of column L=2m, 

modulus of elasticity E=25 (GPa), and the distribution of 

moment of inertia  I  can be written as follows: 

      1*625.0375.0AII . 

Case 2 shows a stepped simply supported column 

subjected to axial compression load P . This column 

composed of three equal parts, with uniform section at each 

segment, and the central part has a double moment of 

inertia. Each part length is 1.5m, Young's modulus of 

elasticity E=210(GPa), and the moment of inertia of the 

side part is I0=2.1644e-9 m4.  

Case 3 gives the exact value of buckling load of a 

simply supported prismatic column under axial distributed 

loading of )21()( 0   NN  where N0=1 is the value at 

the point 0  and 1 .  

Case 4 deals with the linear buckling of web- tapered 

cantilevers I section, the web height is made to vary 

linearly along the length so that, at the free end of 

cantilever column, the height is diminished. The material 

and geometrical properties is as shown in the figure. 

On the basis of these comparative results presented in the 

Table 2, it can be stated that, there is an excellent 

agreement between the critical buckling loads obtained by 

present method using 20 terms of power series expansions 

and the other available analytical or numerical results.  

 

Table 2: Comparison of the present analysis results with the other 

results on the buckling loads of different columns. (Example 3) 

 
 

 

3.4 Example 4 

 

Table 3 provides some information on the convergence 

of first frequency computed by the present solution with 

those obtained by using Ansys software [18] and other 

available numerical and analytical methods. Case 1 

presents the value of natural frequency of a uniform 

member resting on two parameter elastic foundation for 

L=1m, EI=1(Nm2), N=10N, K=0.4, K1 =1.1.  

Case 2 denotes a uniform beam resting on variable 

Winkler elastic foundation  24.011000)( xK  with 

L=1m, EI=1(Nm2) and 1A ( mkg / ).  

Case 3 gives the value of natural frequency of a tapered 

beam composed of two elements. The variable functions 

are:  

 
3

00 )1()(,      )1()(   IIAA for     5.00  ;  

3

00 )2()(,      )2()(   IIAA for  15.0  ,  
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which L=1m, 30.3 GPa  and 10000 kg/mE   .   

Case 4 signifies the fundamental natural frequency of a 

steel stepped cantilever column of length L. This column 

has an abrupt change in cross-section of length 5.0 . 

The geometrical and material properties of column are 

shown in its figure. 

As it is observed in Table 3, there is a good agreement 

between the results of proposed method and the results of 

other numerical and theoretical methods in terms of natural 

frequency of prismatic and non-prismatic members. This 

example prompts again the efficiency of the current 

method. 

 

Table 3: The circular frequency  srad /  for column with 

different boundary conditions. (Example 4) 

 

 

3.5 Example 5 

 

The last example is an investigation of stability analysis 

of steel frames composed of tapered and uniform members. 

This example presents the accuracy of proposed study to 

calculate the buckling load of plane frames Case 1 

considers the steel portal frame of I-cross section with 

geometry and material properties as shown in figure. Case 

2 presents the steel gable frame having I -section and the 

AB and BC are tapered members which the total depth of 

cross-section varies linearly along its length. The material 

properties of member and geometry are indicated in the 

figure 

 

On the basis of these comparative results presented in 

the Table 4 can be stated that, there is an excellent 

agreement between the critical buckling loads obtained by 

present method and other available analytical or numerical 

methods.  

 

Table 4: Comparison of the present analysis results with the other 

results on the buckling loads of different steel frames.(Example 5) 

 

 
 

 

4. Conclusion  

 

In this paper, a numerical procedure based on power 

series expansions and the principle of virtual work is used 

to derive stiffness and mass matrices of non-prismatic 

column resting on variable two parameter elastic 

foundations. Power series approach is used to solve the 

fourth order differential equation with variable coefficients 

and determine the four sets shape functions of non-uniform 

members. In turn, based on the principle of internal virtual 

work along the element axis, the element matrices for the 

buckling and free-vibration analysis of non-prismatic beam 

columns were obtained. 

The efficiency and accuracy of this method were 

provided by several comparable numerical examples. The 

proposed method can be applied in various form of non-
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prismatic member under axially concentrated loads; fully 

resting on variable one- or two-parameter elastic 

foundations; variable mass per unit length. Furthermore; it 

can be used to evaluate both natural frequency and 

buckling load concurrently. As demonstrated in the 

numerical examples section, the results obtained using the 

proposed computations are in close agreement to those 

obtained by the rigorous analysis. In most cases, the natural 

frequencies and critical buckling loads of non-uniform 

members subjected to several effects can be generated with 

very good accuracy for engineering problems, within an 

error of 0.01%–0.3%, by considering only few elements. 

The efficiency of the method is then confirmed. 

 

Appendix A 

 

With the aim of the symbolic software MATLAB [19], 

)3,2,1,0( iyi
 are derived. The first few terms are 

expressed below: 
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