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Abstract: 

 

A finite element solution based on equevalent elements is proposed for the static and 

dynamic analysis of tallhigh tensioned cable antennas. To reduce high number of degrees of 

freedom in space frame body of a structure, a simple equivalent beam element is defined for 

each simulative substructure. This numerical procedure is applicable to analyze complex 

three dimensional assemblies of substructures of such similar complex structures. In this 

analysis wind pressure effects accompanied by change of postentioning loads in nonlinear 

cable elements, earthquake effects, and any other arbitrary loads on the substructures. 

Accordingly, the restriction of the loads on the cable elements to gravity and thermal loads 

can be applied. 

The algorithm is developed upon an efficient cable elements depending on the given 

position and curved geometry of the cable, its end forces, and its tangent stiffness matrix. The 

employed formulation scheme permits any magnitude of deformation  for straight or curved 

elements. The postensioning stresses in cables were considered as initial stresses.  

To simulate the equevalent elements, both ends stiffness, damping and mass components 

are calibrated to present the same static and dynamic responses as the selected substructure. 

To simulate dynamic responses, the equevalent single mass matrix and its adjusted position 

are carried out to obtain the same frequencies in equevalent elements. The static solution of a 

complete structure compared well with the results presented by simulated model. 

This paper proposes an alternative structural analysis modeling strategy for guyed steel 

towers design, considering all the equivalent structural forces and moments, by using three-

dimensional beam finite elements. Comparisons of the above mentioned design models with 

an alternative, that models the main structure and the bracing system with 3D beam finite 

elements, are made for existing guyed steel telecommunication towers (325m high). The 

comparisons are initially based on the towers static and dynamic structural behavior later to 

be followed by a linear buckling analysis to determine the influence of the various modeling 

strategies on the tower stability behaviour. 

d
 

 

1. Introduction 

 

Guyed towers are special structures widely used in 

communication industry as antenna-supporting structures. A 

guyed tower is a nonlinear structural system in which the 

mast, consisting of single beam-column or multiple members 

(trusses) is supported elastically at various points along its 

height by inclined pretension cables with their ends anchored 

to the ground. As a result of the overall slenderness and 

flexibility of the system, guyed tower exhibit a high degree of  
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nonlinearity and dynamic sensitivity to turbulent wind 

excitation. Thus to obtain reliable structural responses of the 

vibrating tower, a 3-D nonlinear dynamic analysis is 

mandatory.Leonard et al [1] used a two noded elements to 

study the static and dynamic response of lightly stressed 

cables. Argyris et al [2] introduced a spatial line element 

for the analysis of postensioned cable networks. Henghold 

et al [3] introduced multi node curved elements. A two 

noded curved element polynomial shape function. A two 

noded curved element type using Lagrangian shape 

function was presented by Gambhir [4] and Ozdemir [5]. 
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Another method named as condensation of structure or 

substructuring is proposed by Tiv [6]. In this method, to 

reduce the high number of degrees of freedom in complex 

structures, a repeatable substructure is selected and 

replaced by equivalent elements. The closer the response of 

the equivalent elements to original substructure, the more 

applicable the method is and the more accurate the results 

will be.  

Despite these facts, most of the traditional structural 

analysis Nomenclature methods for telecommunication and 

transmission steel towers still assume a simple truss 

behavior, where trough all connections σmax not exceed the 

maximum stress of the tower and all members are 

considered hinged. On the other hand, upon structural 

mechanisms, umax = Maximum horizontal displacements of 

the tower could control and compromise the assumed 

structural response, and can be presented by f01 = First 

natural frequency of the tower  in various commonly used 

tower geometries, where for truss type f02 = Second natural 

frequency of the tower, maney of such models are adopted 

as (Policani 2000, 2000a[7]; Silva et al. 2000, 2002[8, 9]). 

Furthermore, f03 is equal to Third natural frequency of 

the tower.  A usual solution to overcome this problem is the 

use of dummy f04 = Fourth natural frequency of the tow,   

structural bars to prevent the occurrence of the unwanted 

degrees of f05 = Fifth natural frequency of the tower, 

freedom. These bars, possessing a small axial stiffness, are 

generally L01 = First buckling load of the tower, employed 

to prevent the occurrence of structural mechanisms, L02 = 

Second buckling load of the tower  , enabling the use of 

standard finite element programs. A possible L03 = Third 

buckling load of the tower  , explanation for the structure 

stability is related to the semi-rigid, L04 = Fourth buckling 

load of the tower, instead of the assumed hinged joint 

behaviour. In fact, most major L05 = Fifth buckling load of 

the tower  , steel tower constructors still rely on full-scale 

tests to determinewhich design and fabrication details can 

provide a good testcorrelation with the assumed simple 

truss model results. The Structural Modeling by Several 

authors have contributed with theoretical and experimental 

investigations to access the best modeling strategy for steel 

transmission and telecommunication towers. It is fair to 

mention the investigations made by: Albermani et al 

2004[10]; Carril Junior 2000[11]; El-Ghazaly and Al-

Khaiat 1995[12]; Kahla 1994[13] and 2000[14], 

Kitipornchaiand Albermani 1992[15]; Madugula and 

Wahba 1998[16]; Menin 2002[17], Raoand Kalyanaraman 

2001[18]; Saxena et al 1989[19]; Wahba et al 1996[20] 

andWahba et al 1998[21]. 

Kahla 1994[13], numerically modelled the dynamical 

effects present in guyed steel towers including the cable 

galloping effects. Later the same author, Kahla 2000[14], 

dynamically modelled the rupture of acable present in 

guyed steel towers. The analysis indicated that the guyed 

steel towers cable rupture, disregarding the wind actions, 

was one of the most severe critical load hypotheses for the 

investigatedstructures  .Wahba et al 1996[20], considered 

the dynamical nature of the load acting in guyed steel 

towers like wind, earthquakes and cable gallop. 

El-Ghazaly and Khaiatz 1995[12], evaluated 

telecommunication guyed steel tower designs based on 

discussions of the various non-linear aspects involved on 

their numerical modelling. This paper also contemplated 

the development and comparisons of the results of a 3D 

model for a 600 meter height guyed steel tower . Wahba et 

al 1998[21], performed an investigation of the numerical 

models used in telecommunication guyed steel towers. The 

authors stressed the relevance of considering the non-linear 

effects present even at service load levels. In a subsequent 

paper, Madugula andWahba 1998[21], described two 

different finite element models for thedynamical simulation 

of guyed steel towers.  

Menin 2002[17], evaluated telecommunication guyed 

steel towers from their static and dynamical structural 

responses. The static analysis compared with linear and 

non-linear mathematical models. The dynamical analysis 

employed the Monte Carlo simulation method including 

the wind load floating parcel producing interesting results . 

Albermani and Kitipornchai 2003[22], used the finite 

element method by means of a geometrical and physical 

non-linear analysisto simulate the structural response of 

telecommunication and transmission steel towers. This was 

followed by the work of Albermani et al 2003[22], that 

investigated the possibility of strengthening steel truss 

towers from a restructure and rearrangement of their 

bracing systems. The adopted solution consisted on the 

addition of axially rigid systems to intermediate transverse 

planes of the tower panels . 

Veletsos and Darbre, 1983[23] provided elucidation of 

certain aspects of the free vibration of inclined parabolic 

cables, providing physical insight and interpretations to 

major trends. They also introduced simple approximate 

expressions with the aid of which the complete spectrum of 

the natural frequencies can be sketched readily. In addition 

they presented simple, closed-form expressions for certain 

infinite series involving integrals of the natural modes of 

the cable. 

Starossek, 1991[24] investigated the dynamic behavior 

of an extensible sagging cable. He presented a dynamic 

stiffness matrix whose coefficients were functions of the 

frequency of motion, an approach suitable for dynamic 

direct-stiffness analysis of composed systems such as 

cable-stayed bridges and guyed masts. His study was 

restricted to small displacements (linear theory) and 

considers motion within the vertical cable plane only. He 

considered viscous damping due to external fluid. He 
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utilized trigono-metrical solution functions with complex 

arguments, which implied a substantial simplification in the 

analysis of damped vibrations. Using example calculations, 

he discussed stiffness functions and compared it to other 

available solutions. Starossek 1993[25] derived a 

frequency-dependent closed form analytic functions for the 

dynamic stiffness of a sagging cable subject to harmonic 

boundary displacements. He avoided the troublesome fact 

that the stiffness functions were frequency-dependent 

especially in regards to the eigenvalue problem, by using a 

method whereby an analytic dynamic stiffness function 

was reduced to a linear matrix polynomial. This reduction 

corresponds to a mathematically performed transition from 

a continuum to a discrete coordinate vibrating system. In 

his work, he did not account for cable damping and 

assumed that the dynamic stiffness functions were real. 

Yamaguchi and Adhikari, 1995[26] investigated 

analytically the modal damping characteristics of single 

structural cables. They derived an energy-based 

representation of modal damping in structural cables in the 

form of the product of modal strain energy ratio and loss 

factor. They calculated the modal strain energy to total 

potential energy ratio numerically for both axial and 

bending deformations using a finite element method. They 

deduced from their analysis that the modal damping in a 

structural cable is generally very low because of the very 

large contribution of the initial cable stress to the total 

potential energy, causing very small modal strain energy 

ratios. 

This paper also contemplated a numerically conformed 

equevalent simple element compromising with a set of 

elements included in a repeated substructure system that 

categorized upon configuration of elements assembly 

through the whole structure. To achieve the 

compromisation, equevelent nodal stiffnesses and certain 

single concentrated mass matrix acts at a certain location 

across the equevalent element and also an average damping 

coefficient are considered for the single equevalent 

element. The method of balancing element dynamic 

responces is based on equal frequency modes. Accordingly, 

the numerical analysis of reduced-scale guyed steel towers 

models that produced results in consonance with the 

developed real numerical model.  

 

2. Non-Linear Behavior of Cables 

Structural cables constitute an important part of modem 

structural engineering applications involving large spans. 

Pre-tensioned guy cables are implemented in radio and 

communication guyed towers to provide stability and 

support to flexible masts reaching high elevations as they 

are subjected to the effect of wind-induced forces. Stay 

cables are utilized in cable-stayed and suspension bridges 

to support their decks and allow for longer navigational 

clear spans. To achieve larger free spans, cables are used to 

provide support for large span roofs used to cover sport 

arenas and exhibition halls. Recently, space structures are 

designed to benefit from the advantageous properties of 

cables in terms of strength, light self-weight and economy 

where they are used as structural tension elements in space 

stations. 

The cable has a self-weight  per unit chord length, 

modulus of elasticity E, uniform cross sectional area A, 

chord length Lch with inclination angle θ with respect to the 

X -axis. The deformed geometry of any point on the cable 

is represented by the Cartesian coordinates space vector (x, 

y,z), or (x1,x2,x3) using index notations. A 3-D uniform 

loading vector ={ , . }T and concentrated loading 

vector ={ , . }T are applied to the self-weight 

deformed cable in a varying way along its chord length. 

Due to 3-D loading, the internal cable tension T={Tx, Ty, 

Tz}
T at any point (x, y ,z) will vary from one point to 

another along the cable. 

The main Assumptions to simplify the derivation of the 

governing equilibrium equations of a cable are as follows: 

• Elastic cable material with finite strain (Lagrangian 

nonlinear strain). 

• Long and pre-tensioned cables having dominating axial 

stiffness (negligible bending and torsional stiffness). 

• The tension in the cable varies only along the X -axis (X 

is the only considered independent variable). 

 

 
 

Fig.1: Cable element 
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Equilibrium conditions for element of length ds of the 

self-weight deformed cable initially in the X-Z plane in x' 

direction is written as follows: 
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The mechanical behavior of a postensioned cable 

hanging by the weightis nonlinear despite of linear elastic 

behavior of  material  due  to  lateral displacement.  Any  

geometry  of  cable  element,  represent  a   different 

stiffness.  

The general equilibrium at time t yields: 

 

   Rt –Ft =0  (5)  

  

where Rt  is external nodal forces at time t and Ft  is 

nodal forces  due  to stresses. Rt  may be composed of 

equivalent nodal forces due to body forces, surface 

tractions, and any concentrated forces as follows: 

 

Rt = Rbt+ Rs + Rct (6)  

 

where Rb is equivalent nodal body forces, Rs is surface 

traction, and Rc is concentrated nodal forces. 

The command “Member Cable” is assigned for cable 

analysis. The cable is modeled as a tensile member, taking 

into account the axial stresses of such a member and its 

sag. The cable (non-straight and pre-stressed) stiffness in a 

simple form can be determined via stiffness parameters as 

follows: 
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EA stands for axial member stiffness, L for member 

length,  for member dead load intensity, T for internal 

force of pre-stressing, θ for angle between member axis 

and horizontal axis. 

It is noted that such modeling practically excludes the 

lateral loading. The behavior of such a member 

corresponds to a certain stiffness spring behavior. It 

evaluates two effects, namely, elastic elongation and 

geometry (sag) change. 

The guy is modeled by a cable with small primary sag, 

subjected by distributed or concentrated loads, acting in the 

plane of sag. Cable calculation evaluates primary mounting 

pre-stressing, support flexibility and temperature gradient. 

A geometrically non-linear behavior of guy is evaluated by 

employing the following expression for calculating the 

flexible space cable: 
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Where, L1 ,L2 – cable  span  before and after 

deformation Δ – cable span change; H0 , H – cable 

thrusting (tensile)force before and after deformation; l –

cable primary length; Δt – temperature change; δ – cable 

primary extension/shortening; Q(x) – shearing force 

function, analogous to a simple beam; N(x) – axial force 

function. 

In order to incorporate mechanical damping of cables into 

the formulation, and as reported by Kahla, 1994[13], 

fictitious linear viscous dampers are inserted in parallel 

with each cable as shown in Figure 1. These damping 

elements can efficiently reproduce the energy dissipation in 

the material and the friction due to inner-strand rubbing. 

The vector of fictitious damping force FDcable at the top end 

of the cable is computed as: 
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cc is the damping constant. ζc is a fraction of critical 

damping by the same stiffness and mass. uij is the cable 

chord vector and vij is the relative velocity of cable ends. 

One must note that in the program the loading 

component acting along the line connecting supports, is 

evaluated when modeling the guy. This influences 

obtaining more exact mast analysis results. 

While the analysis technique described herein applies to 

any structure including cable components, it may be suffice 

to look at the overall system from the point of view of the 

cables attachment points and assume that loads and 

stiffness of the structure or substructures have been 

condensed to the translational degrees of freedom of the 

attachment points of the cables. Therefore, the cable 

structure can be viewed as a collection of nodes 

interconnected by substructures and cables. The 

displacement force equation for a predefined equivalent 

element is written as follows: 

Fe = Ke δe (10) 
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where Fe is equivalent nodal force, Ke is equivalent 

stiffness matrix and δe is displacements at selected degrees 

of freedom for equivalentelement. This equation must 

conform with the substructure displacement force equation  

participated in displacement force equation of the whole 

structure. The substructure displacement force equation is 

written as follows: 

 

Fs = Ks δs (11) 

 

Fs is the substructure nodal force, Ks is substructure 

stiffness matrix and δs is displacements of whole degrees of 

freedom for substructure elements.  

To conform nine degrees of freedom belonging to three 

nodes at the corners of the triangle section where a 

substructure connected to the next, with six degrees of 

freedom belonging to an equivalent beam element ,three 

additional redundant elements are considered to joint mid-

point of the above triangle to three corners. This is to 

facilitate to carry out the equivalent displacements and 

rotation at the mid-section of substructure junctions. Also, 

these deformations later must be compared well with the 

six deformation of equivalent element nodes .To avoid any 

unnecessary change in substructure stiffness the three 

added redundant element stiffness must be in such a way 

that the deformations in mid-point to be the same as what 

will exist at similar node in equivalent element. Figure 2 

shows the substructure and forces at top mid-point that are 

compared with the equivalent element and similar forces at 

top node. To conform the stiffness components of 

equivalent element with the substructure, the section 

properties as section area against axial force, shear force, 

second moment of inertia, and twisting moment of inertia 

must be calculated separately. 

In dynamic point of view, the mass matrix component 

presenting dynamic behavior of equivalent element, 

including their positions must be calculated as an element 

lumped mass matrix producing same frequency of modes. 

The stiffness components were affixed in static similarity, 

are employed to find equivalent mass in six position 

separately, to represent equivalent frequencies to the 

substructure components of frequency.  

To ease the solution procedure, Rayleigh or proportional 

structural damping was assumed. The damping matrix of 

the element [ cc ] can be expressed as: 
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(12) 

 

α and β are Rayleigh damping constants.  

The comparison of equivalent model and the main 

structure deformation is shown in Figure 3. This result 

shows that the similarity is done well. 

In finite element frame work, the variation of 

deformation and strain of element are functions of nodal 

displacements as follows: 

 

δe(x,y,z)=Ne(x,y,z) δe (13) 

 

ε(x,y,z)=Be(x,y,z)


 e (14) 

 

where 


 e is a nodal displacement, Ne(x,y,z) is shape 

functions and Be(x,y,z) is strain displacement matrix for 

element e. Minimizing the potential energy variation at any 

increment, and using equation 5 and 6, the stiffness matrix 

of element and equivalent nodal forces are obtained as 

follows: 

[K] =  v[B]T [D][B] dv (15) 

 

Rt=  v [N] {fb}dv +  A [N] {fs}dA (16) 

 

Ft =  v[B]T[ ơ]dv (17) 

 

where fb is body force, fs is surface traction, σ is the 

existing stress in element.  

Geometrical nonlinearity makes B matrix to be 

composed of two parts as follows: 

 

B = Bℓ+ Bn (18) 
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B is linear part, Bn is the part due to geometrical 

nonlinearity and dS is small length of element. To ease the 

solution, a set of equivalent nodal force as the effect of 

geometrical nonlinearity is to calculate at each increment to 

be applied at the next increment. This nodal force is as 

follows:  

 

Fn
t=  v[Bn]

T[ơ]dv (20) 

 

These equations are solved in incremental scheme. 

The strain and potential energy for an elastic cable 

element of undeformed length ℓe and mass per unit length 

e are considered. The position of any material point in the 

deformed configuration is writted as follows: 
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The Lagrangian strain ε in the deformed axial direction 

is presented in terms of the deformed arc-length S and 

undeformed one as follows: 
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S is curved axis of coordinate along element length s. 

The elastic stress-strain relation leads to write the tensile 

force,  ft in the cable as follows: 
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A and E are undeformed cross section area of the 

element and the elastic modulus respectively. 

The potential energy for the cable element can be 

expressed upon dynamic condition as follows: 
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fe is static load vector and (o) means d/dt. 

The deformed configuration of cable element can be the 

summation of static 


 s and dynamic deformation 


 d as 

follows:  
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Therefore, the potenial energy for element e is find as 

follows: 
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According to minimum energy level, the variation of 

equaion 28 yields: 

К 


 = F                                                                          (33) 

 

К is equevalent matrix of material behaviour that also 

includes dynamic and geometrical non-linearityeffects. F is 

equevalent nodal forces affected by different loads. 

Applying Hamilton’s principle to Lagrangial equation 

28, leads to the equation of motion as follows: 
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This equation can be numerically solved in finite 

element framework with the consideration of non-linear 

cable effects on the satisfaction of equilibrium, 

compatibility, and any proposed mechanical behgaviour of 

material. 

 

 

 
 

Fig.2: Substructure and equevalent element 

 

In the dynamic analysis of cable systems, super position 

of loads and displacements is not strictly valid due to the 

effects of loading nonlinearities and large amplitude 

vibrations. There are three sources of nonlinearity in cable 

behavior: 

• Nonlinearities associated with the deformation of 

spirally wound strands forming the cable cross section are 

of important as they affect the calculation of the 

instantaneous stiffness of the system. In addition, hysteretic 

damping can be involved with large amplitudes. 

• Nonlinearities associated with large deformations 

cause changes in the cable stiffness and, hence, affect the 

natural frequencies of the entire system. 

• Nonlinearities associated with aerodynamic forces that 

depend upon the continuously varying response and hence 
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geometry of the cables. The dynamic pressure changes 

direction according to the moving and rotating cable axis. 

In general, the governing equations for pre-tensioned 

cable dynamics are coupled and highly nonlinear. General 

analytical solutions for these systems are not available, and 

therefore, numerical techniques have to be used. The finite 

element method, FEM, is the most well-known of all 

numerical techniques. It is capable of modeling such a 

three dimensional geometry of such complex structure, 

loading and both geometric and material nonlinearities with 

different prescribed boundary conditions. 

 

3. The Cable Antenna Specifications 

 

The selected antenna is 325m high that is composed of 

main  truss  tower  and  cables constraining the tower at 

five levels. The  main  tower  is  pyramid  up  to level 7 m 

and jointed on base. A triangle  section  (3.6  m  members)  

space truss is between 7 m up to 245  m  elevation.  A 

transition  space  truss changes the cross section diameter 

from 3.6 m at elevation 245  to  3  m  at elevation 248.5 m. 

This section continues up to elevation  294  m.  At  this 

elevation the cross section of space truss is square with 

1.45 m  edges  and continues up to 325 m elevation.  

Figure 3-a show the tower and truss cross sections, 

respectively. The cables constrained the tower at elevations 

59.5, 122.5, 185.5, 248.5, and 294 m. The total weight of 

tower is approximately 186.84 ton. Figure 3-b shows the 

number of cable elements  with  beam-column  equivalent 

elements for main tower. 

 

 

 
Fig.3: Typical comparison of model  and structure deformation 

 

 
 

Fig. 4-a: Tower and space truss cross sections 

 

 

 
 

Fig. 4-b: Cables & beam-column Equevalent elements 

 

4. Results 

Figure  4-a  shows  the effect of postensioning on tower 

vertical deformation. The change of bending moments 

along tower in equivalent beam-column elements due to  

postensioning forces is shown in Figure 4-b. These effects 

on axial and shear  forces  are shown in Figures 4-c and 4-d 

respectively. 
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Fig.5-a: Max. displacement along tower(m) 

 

 
 

Fig.5-b: Moment along tower(ton-m) 

 

 
 

Fig.5-c: Axial force due to postensioning(ton) 

 

 
 

Fig.5-d: Shear force along tower(ton) 

 

In dynamic analysis of antenna upon the proposed  

equevalent  beam-column and cable elements, the number 

of  elements  is  reduced  for  more speed in multi-member 

complex dynamic analysis. Different acceleration time 

histories were  applied on the  introduced  antenna  and  the  

maximum  base  shear  force  in  each earthquake carried 

out and compared. Figure 5-a shows these comparison.  

The comparison of antenna deformations  upon  different  

earthquake  effects  are shown in Figure 5-b. The effects  of  

acceleration  time  history amplitude on antenna 

deformation  is  presented  in  Figure  5-c  for  Tabas 

earthquake. 

 

 
 

Fig.6-a: Tabas, Noghan, Manjil, Park-field, Morgani-hill 
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Fig 6-b: Max. displacement along  tower (m), (0.25g) 

 

Table 1 presents the angular  and  transversal  frequencies,  

and period of structure for different modes.  

 

 

5. Conclusion 

A tall postensioned cable tower is analyzed upon  

simulated equivalent simple  elements under static and 

dynamic loading.  This  method  of  introducing  equivalent 

elements,  not  only  increase  the  speed  of  computing,   

however,   make possibility to analyze complex structures. 

The effects of increase in postensioning of the cables on  

the  behavior  of such a tall structure as moment, axial and 

shear forces are  presented.  The presented results are in 

general agreement with what is expected in behavior of this 

kind of structure. 

The methodology adopted to model the nonlinear 

dynamic interaction between the guy cables and the mast of 

a guyed tower can be extended to model the interaction 

between stay cables and decks and towers of a cable-stayed 

bridges. 

The extension to bridge applications will require 

consideration of support flexibilities and movements, in 

addition to consideration of different loading combinations 

(dead load, traffic load, wind load, seismic load, rain/ice, 

etc.). Other important issues in modeling stay cables, both 

flexural and torsion stiffness matrices will have to be 

included in the cable analysis in addition to axial stiffness. 

 

 
 

Fig.6-c: Maximum displacement along tower (m) (Tabas) 

Table.1: Angular and transversal frequencies, and period of structure 

 
  Mode No.                  1               2              3               4              5              6               7              8               9               10     

 Frequency(R./S.)  1.19024    1.19244    1.19258    1.19264    1.1931     1.19018    1.35112   1.35242    1.35352     1.35404 

 Frequency(Hz.)    0.18943    0.18978    0.18980    0.18981    0.1899     0.18942    0.21504   0.21524    0.21542     0.21550 

 Period (S.)            5.27891   5.26919    5.26857    5.26832     5.2663     5.27917    4.65036   4.64590    4.64209     4.64033 
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