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Abstract: 
 

The use of artificial neural networks has increased in many areas of engineering. In 

particular, this method has been applied to many geotechnical engineering problems and 

demonstrated some degree of success. A review of the literature reveals that it has been used 

successfully in modeling soil behavior, site characterization, earth retaining structures, 

settlement of structures, slope stability, design of tunnels and underground openings, 

liquefaction, soil permeability and hydraulic conductivity, soil compaction, soil swelling and 

classification of soils. The method of conjugate gradients provides a very effective way to 

optimize large, deterministic systems by gradient descent. In its standard form, however, it is 

not amenable to stochastic approximation of the gradient. Here we explore a number of ways 

to adopt ideas from conjugate gradient and Back Propagation in the stochastic setting, using 

fast Hessian-vector products to obtain curvature information effectively. In our benchmark 

experiments the resulting highly scalable algorithms converge about an order of magnitude 

faster than ordinary stochastic gradient descent. 

The objective of this paper is to provide a general view to describe this method in predicting 

mechanical behavior and constitutive modeling issues in geo-mechanical behavior of cohesive 

soil to be used in geo-mechanics. In this research the Batching Back Propagation method (BBP) 

has been employed and the characterized parameters are introduced as initial void ratio, liquid 

limit, plasticity index, natural density, moisture percent, solid density of grain, over 

consolidation ratio, and pre-consolidation pressure. The paper also intends to present how much 

the input memory may cover the accuracy of predicted behavior of standard triaxial drained and 

undrained tests. The paper also discusses the strengths and limitations of the proposed method 

compared to the other modeling approaches. Also, the sensitivity of intended parameters is 

investigated. 

D

D 

1. Introduction 

 

The engineering properties of soil and rock exhibit 

varied and uncertain behavior due to the complex and 

imprecise physical processes associated with the formation 

of these materials (Jaksa 1995)[1]. This is in contrast to 

most other civil engineering materials, such as steel, 

concrete and timber, which exhibit far greater homogeneity 

and isotropy. To compromise with the complexity of geo-

mechanical behavior, and the spatial variability of these 

materials, traditional forms of engineering design models  
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are justifiably simplified. An alternative approach, which 

has been shown to have some degree of success, is based 

on the data alone to determine the structure and parameters 

of the model. The technique is known as artificial neural 

networks and is well suited to model complex problems 

where the relationship between the model variables is 

unknown (Hubick 1992)[2]. It is hoped that the proposed 

method may attract more geotechnical engineers to pay 

better attention to this promising tool.  

For the optimization of large, differentiable systems 

such as stress-strain relation of materials, methods that 

require the inversion of a curvature matrix (Bhagat, P.M. 

(2005)[3], Marquardt (1963)[4], or the storage of an iterative 
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approximation of that inverse are prohibitively expensive. 

Conjugate gradient techniques, which are capable of 

exactly minimizing a d-dimensional unconstrained 

quadratic problem in d iterations without requiring explicit 

knowledge of the curvature matrix, have become the 

method of choice for such cases. 

Their rapid convergence, however, breaks down when 

the function to be optimized is noisy, as occurs in online 

(stochastic) gradient descent problems. Here the state of the 

art is simple gradient descent, coupled with adaptation of 

local step size parameters. The most advanced of these 

methods, SMD, (Schraudolph, 1999, 2002)[5, 6], uses 

curvature matrix-vector products that can be obtained 

efficiently and automatically, (Santiago, R.A., G. Lendaris, 

2005)[7]. Here we use the same curvature matrix-vector 

products to adopt some ideas from conjugate gradient in 

the stochastic setting. 

The paper starts with a brief overview of the structure and 

operation of the Feed forward neural networks and gives a 

general overview of this method. Finally, the paper 

discusses the relative success of the proposed method in 

predicting clay mechanical properties and behavior. 

 

2. Feed Forward Networks Concept 

 

A basic component of many neural nets, both natural 

and artificial, is the feed forward network. A basic such 

network has the structure depicted in the following 

diagram : 

 

 
 

Fig.1: One set of connection in feed forward network 

 

Here a layer is the usual term for a vertical row of 

neurons. There is full connectedness between the nth and 

(n+1)th layer, i.e., every neuron in the nth layer has a 

connection feeding forward into every neuron in the (n+1)th 

layer. These are not all shown in Figure 1 for reasons of 

clarity. Thus neurons in each layer influence neurons in the 

successive layer as shown in Figure 2. 

 The first layer contains the “input”, i.e., we control 

activations of its neurons. For example, the first layer 

might represent the “retina” of a visual system, which 

obtains information which will be fed forward into and 

 

 
 

Fig.2 

 

processed in further layers. The last layer contains  

“output”, i.e., its activations provide a desired output that 

the neural network provides in response to input in first 

layer . 

Funahashi (1989)[8], among others, have shown that if 

we desire a network which is able to take an arbitrary input 

pattern in the first layer, and provide an arbitrary desired 

output pattern in the last layer, all that is necessary is 3 

layers : 

More specifically, general i-o functions can be 

approximated in a general class of error norms using 

networks of this type .Henceforth we consider only 3 layer 

networks. We define xi to be the activation level   ) either 

chemical or geo-mechanical potential) of the ith neuron in 

first layer, yi to be the activation level of the corresponding 

neuron in second layer, and qi to be the corresponding 

activation level in the third layer. In addition, we define vij 

to be the strength of the connection (weight) from the jth 

neuron in layer 1 to ith neuron in layer 2, wij to be the 

weight from the jth neuron in layer 2 to ith in layer 3 . 

As an example, the first layer might be the retina and xi 

might be proportional to the illumination level at the 

neuron labeled xi. This is the input layer - in this case light 

shineson retina and activates it. The last layer might 

represent what we would call a speech center )neuron 

ultimately connected to a vocal device), and its pattern qi of 

neuron activations corresponds to verbal description about 

to be delivered of what is seen in first layer . 

 

3. Neuron Interaction Rule 

 

Neurons in one layer will be assumed to influence those 

in next layer in almost a linear way : 

 

         (1)    

                                               

i.e., activation yi is a linear function of activations xj in 

previous layer, aside from the modulating function H; here 

θi is a constant for each i . 
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The function H has on biological grounds traditionally been 

assumed a sigmoid as shown in Figure 3. 

 

 
Fig.3: sigmoid function H 

The function H has a finite upper bound, so that 

response cannot exceed some fixed constant . 

The activation in third layer has the form of 

 , which is a linear function of the yi 's. 

Our initial goal is to show here that we can get an 

arbitrary desired output pattern qi of activations on last 

layer as a function of inputs xi in the first layer. x is a vector 

of neuron activations in layer as follows: 

 

  (2)  

 

V is also, a vector of connection weights from the neurons 

in first layer to the ith neuron in the second layer as follows: 

 

  (3)  

 

Now the activation yi of the second layer is written as 

follows: 

 

  (4)  

 

The activation qi in the third layer is as follows: 

 

  (5)  

 

Therefore, the activation pattern q and on the last layer 

(output) can be made an arbitrary function of the input 

activation pattern as follows: 

 

 and   (6)  

Note the activation of neuron in layer 3 is : 

 

 (7)  

                                                   

Now, the question is: if q = f x is defined by the above 

equation (i.e., input determines output through a neural 

network equation), is it possible to approximate any 

function in this form ? 

However, if the first layer represents the retina, then if 

any input-output (i-o) function can be approximately 

encoded in the form the above equation, then it is required 

that if x represents the visual image of a chair (vector of 

pixel intensities corresponding to chair), then q represent 

the neural pattern of intensities corresponding to 

articulation of the words “this is a chair . ”  

Mathematically, for any given function f(x): k  , 

which it can be approximated by f(x)with arbitrary 

precision through a function (x)form (the above equation), 

presenting various measures of error, or norms (here 
k , 

while k is a numerator). Then the important norms might 

be interested as follows : 

 

)()(sup
2

xfxfff kx


    
(8) 

 

  (9) 

 

 (10) 

 

In general form, for a certain value of 

 the term 

"sup" denotes supreme. These norms are denoted as 

C( pk LandLL ,.......,); 21 norms, respectively. In general 

denotes the class of functions f such that  

It can be said that a function  approximates another 

function f, well in  if   is small.  

A sequence  converges to a function f  in  if 

. 

It can be shown that the components of the above 

questions can be decoupled to the extent that they are 

equivalent to the case where there is only one q. Indeed, if 

any desired i-o function can be approximated in systems 

with one output neuron, such single-output systems can be 

easily concatenated into larger ones (with more outputs) 

which have essentially arbitrary approximated in input-

output properties. In any case, the configuration that can be 

assumed is as follows (Fig 4):  
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Fig.4 

 

Therefore, upon the above equation we can write: 

 

 (11) 

 

Consequently, for any given function f(x): k
 , that 

is an approximation a partial answer which has come in the 

form of the solution to Hilbert's 13th problem. He proved 

that continuous function f(x): k
 can be 

represented in the following form: 

 

 (12) 

 

χj and  are continuous functions, and  are 

monotonic and independent of f(x), in such a way that  f 

can be represented as sum of functions that each of them 

depends just on a sum of single variable functions . 

This artificial neural network is a form of artificial 

intelligence which attempt to mimic the behavior of the 

human brain and nervous system, (Lendaris, G., J. 

Neidhoefer, 2004[9]; Fausett 1994[10]). A typical structure 

of the feed forward neural networks consist of a number of 

processing elements, or nodes, that are usually arranged in 

layers: an input layer, an output layer and one or more 

hidden layers (Figure 5). 

 

 

4. Conjugate Gradient 

 

The general fundamental idea of conjugate gradient 

methods is to successively minimize the parameters w  of a 

differentiable function f(x): k
 along a set of k non-

interfering search directions. 

If two non-interfering conjugate directions iv and 

jv are considered and defined in such a way that: 

 

0 j

T

i vHvji   (13)  

 

 
Fig.5: input and output layers in artificial neural networks 

 

where fH 2 is the Hessian of the system. A set of 

mutually conjugate directions is produced by the following 

iteration as: 

 

)(;1 ttttt wfggvv     (14)  

 

where 
tg denotes the gradient at the tth iteration, and 

2

1

2




tt
gg . A k-dimensional quadratic function is 

minimized exactly after k iterations of (
ttt gvv  1 ), 

starting with
00 gv  . This process depends upon the 

function being minimized exactly along each given search 

direction. In such a quadratic function, that is achieved by 

adjusting the parameters w in following form: 

 

t

T

tt

T

tttt vHvvgvww   ;1   (15)  

 

For conjugate gradient on nonlinear optimization 

problems, an explicit linear minimization is usually 

employed to set the step size β. However, it has been 

shown that a local quadratic approximation (i.e., the β 

given in equation 15 can be very effective here, provided 

that suitable trust-region modifications are made. However, 

a nonlinear problem will not be minimized exactly after k 

iterations, but the method can be restarted at that point by 

resetting tv to the current gradient. In general, the 

calculation of β in equation 15 does not require explicit 

storage of the Hessian, which would be O(k2). There are 

several ways to calculate the product of the Hessian with an 

arbitrary vector at a cost comparable to that of obtaining 

the gradient, which typically is O(k) (Pearlmutter, 1994). 

The same goes for other measures of curvature, such as the 



13 

 

Gauss-Newton approximation of the Hessian, and the 

Fisher information matrix (Schraudolph, 2002)[6]. 

Unfortunately conjugate gradient techniques are not 

designed to cope with numerical oscillation and noisy 

gradient; hence it tends to diverge in stochastic settings. 

Occasional reports to the contrary invariably concern 

regimes that we would term near-deterministic (i.e., large 

batch sizes of data). For relatively small archive data 

systems, the extended Kalman filter is a robust alternative, 

albeit at a cost of O(k2) error per iteration. Large archive 

data systems are therefore still often optimized using 

simple (first-order) gradient descent. 

The convergence of simple stochastic gradient descent 

can be improved by adjusting a local step size for each 

system parameter. The most advanced of these algorithms, 

stochastic meta-descent (SMD), adapts local step sizes by a 

dual gradient descent procedure that uses fast curvature 

matrix-vector products, (Schraudolph, 1999, 2002[5, 6]). 

This method adapts the system parameters w  by an 

iterative stochastic approximation of second-order gradient 

steps. As formulated originally, (Orr, 1995[[11]), it was 

unfortunately stable only for linear systems. It has been 

recently succeeded in making it robust for nonlinear 

optimization problems by incorporating a trust-region 

modification (Graepel, et al, 2002[12]). This algorithm also 

uses fast curvature matrix-vector products. 

 

5. Towards Stochastic Conjugate Gradient 

 

To improve upon the above stochastic gradient methods 

by adopting certain ideas from conjugate gradient, the 

resulting of three new algorithms all use fast Hessian 

gradient products are presented. 

One of the reasons why conjugate gradient breaks down 

in a stochastic setting is that the noise and numerical 

oscillation make it impossible to maintain the conjugate 

condition of search directions over multiple iterations, 

instead of trying to construct a set of conjugate directions. 

According to this case, let just move down the gradient as 

follows: 

ttt gww 1   (16)  

 

With a step size aimed at conjugating successive steps: 

 

2

1 ; tt

T

tttt gHgHgvww     (17)  

This choice of β achieves pair wise conjugation of 

gradients (i.e., 0
1


 t

T

t
gHg ) in a deterministic quadratic 

function, as can easily be verified using the identity 

wHg  . 

In systems where the Hessian has some sparsely, it is 

advantageous to be able to decouple the step sizes for 

individual subspaces. To this end we construct a diagonal 

conditioner from equation 17, by replacing the inner 

products by Shannon, T.T., R.A. Santiago, G. Lendaris, 

2003 [13] (component-wise) products and division. In 

order to remove the poles resulting from zero components 

in the denominator, we then average both numerator and 

denominator over the trajectory, as follows: 

 

t

tt

tt

g

gHgHdiag

gHgdiag

diag






)(

)(

(   (18)  

where . denotes exponential averaging, leads to form as 

follows: 




1


ttt

ggg   (19)  

 

Compared to equation 17, a certain average over search 

space dimensions replaced with leaky averaging over the 

optimization trajectory. 

Our third algorithm seeks to preserve as much of the 

conjugate gradient machinery as possible while stabilizing 

it for use in a stochastic setting. 

As the third algorithm, to preserve as much of the 

conjugate gradient machinery as possible while stabilizing 

it for use in a stochastic setting. 

As a stabilized conjugate gradient, the calculation of α in 

equation 13 is focused as a weak point. 

When there are numerical oscillation in data and 

gradients are noisy that leads to a linear minimizations 

inaccurate, we could easily have 
1 tt gg |, resulting in 

inordinately large values of α. To overcome this problem 

we can add the correction term 1t

T

t vg to the denominator, 

and replacing equation 13, with the following: 

1

2

1

2






t

T

tt

t

vgg

g



 

(20) 

 

Note that an accurate linear minimization along 

1tv ensures that 01 t

T

t
vg , therefore, the above equation 

reduces the solution to standard conjugate gradient. The 

correction term comes into play only to the extent that the 

linear minimization fails and the gradient grows in 

magnitude, reducing the impact on α of this pathological 

situation. 
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6. Neural Network for Mechanical Behavior of 

Clay 

The propagation of information in artificial neural network 

method starts at the input layer where the input data are 

presented. The network adjusts its weights on the presentation 

of a training data set and uses a learning rule to find a set of 

weights that will produce the input/output mapping that has 

the smallest possible error. This process is called “learning” or 

“training”. 

Once the training phase of the model has been successfully 

accomplished, the performance of the trained model has to be 

validated using an independent testing set. Some ordinary and 

specific details of this artificial neural network modeling 

process and development and the employed algorithms are 

beyond the scope of this paper and are given elsewhere (e.g. 

Moslehi et al. 1992[14]; Flood and Kartam 1994[15]; Maier 

and Dandy 2000[16]). 

The feed forward artificial neural network method learns 

from data examples presented to them and use these data to 

adjust their weights in an attempt to capture the 

relationship between the model input variables and the 

corresponding outputs. Consequently, artificial neural 

network method does not need any prior knowledge about 

the nature of the relationship between the input/output 

variables, which is one of the benefits that artificial neural 

network method has compared with most empirical and 

statistical methods. 

The artificial neural network modeling philosophy is 

similar to a number of conventional statistical models in the 

sense that both are attempting to capture the relationship 

between a historical set of model inputs and corresponding 

outputs. For example, suppose a set of x-values and 

corresponding y-values in 2 dimensional space, where y = f(x). 

The objective is to find the unknown function f, which relates 

the input variable x to the output variable y. In a linear 

regression model, the function f can be obtained by changing 

the slope tanυ and intercept β of the straight line in Figure 6-a, 

so that the error between the actual outputs and outputs of the 

straight line is minimized. The same principle is used in 

artificial neural network models. Artificial neural network 

method can form the simple linear regression model by having 

one input, one output, no hidden layer nodes and a linear 

transfer function (Figure 6-b). The connection weight w in the 

artificial neural network model is equivalent to the slope tanυ 

and the threshold è is equivalent to the intercept β, in the 

linear/nonlinear/quasi-linear regression model. Artificial 

neural network method adjust their weights by repeatedly 

presenting examples of the model inputs and outputs in order 

to minimize an error function between the historical outputs 

and the outputs predicted by the artificial neural network 

model. 

 

 
(a) 

 

 
(b) 

 

Fig.6: linear regression models 

 

However, if the relationship between σn and τn is non-

linear, regression analysis can only be successfully applied 

if prior knowledge of the nature of the non-linearity exists. 

On the contrary, this prior knowledge of the nature of the 

non-linearity is not required for artificial neural network 

models. In the artificial neural network model, the degree 

of non-linearity can be also changed easily by changing the 

transfer function and the number of hidden layer nodes. In 

the real world, it is likely to encounter problems that are 

complex and highly non-linear. In such situations, 

traditional regression analysis is not adequate (Gardner, 

1998)[17]. In contrast, artificial neural network method can 

be used to deal with this complexity by changing the 

transfer function or network structure, and the type of non-

linearity can be changed by varying the number of hidden 

layers and the number of nodes in each layer. In addition, 

artificial neural network models can be upgraded from unit-

variation to multi-variation by increasing the number of 

input nodes. 

 

7. Soil Properties and Behavior 

Soil properties and behavior is an area that has attracted 

many researchers to modeling using artificial neural 

network method. Developing engineering correlations 

between various soil parameters is an issue discussed by 

Goh (1995a; 1995c)[18, 19]. Goh used neural networks to 

model the correlation between the relative density and the 

cone resistance from cone penetration test (CPT), for both 

normally consolidated and over-consolidated sands. 

Laboratory data, based on calibration chamber tests, were 

used to successfully train and test the neural network 

model. The neural network model used the relative density 

and the mean effective stress of soils as inputs and the CPT 

cone resistance as a single output. The artificial neural 
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network model was found to give high coefficients of 

correlation of 0.97 and 0.91 for the training and testing 

data, respectively, which indicated that the neural network 

was successful in modeling the non-linear relationship 

between the CPT cone resistance and the other parameters. 

Many other studies have successfully used artificial neural 

network method for modeling soil properties and behavior, 

which, for brevity, are acknowledged for reference 

purposes in the following paragraphs. 

Ellis et al. (1995)[20] developed an artificial neural 

network model for sands based on grain size distribution 

and stress history. Sidarta and Ghaboussi (1998)[21] 

employed an artificial neural network model within a finite 

element analysis to extract the geo-material constitutive 

behavior from non-uniform material tests. Al-Rabadi, A.N.,  

G. Lendaris, (2003)[22] used neural networks for 

representing the behavior of sand and clay soils. Ghaboussi 

and Sidarta (1998)[23] used neural networks to model both 

the drained and undrained behavior of sandy soil subjected 

to triaxial compression-type testing. Penumadu and Zhao 

(1999)[24] also used artificial neural network method to 

model the stress-strain and volume change behavior of sand 

and gravel under drained triaxial compression test 

conditions. Zhu et al. (1998a; 1998b)[25, 26] used neural 

networks for modeling the shearing behavior of a fine-

grained residual soil, dune sand and Hawaiian volcanic 

soil. Greenwood, G. W.,  (2005)[27] used a neural network 

model to generate a quantitative soil classification from 

three main factors (plastic index, liquid limit and clay 

content). Najjar et al. (1996a)[28] showed that neural 

network-based models can be used to accurately assess soil 

swelling, and that neural network models can provide 

significant improvements in prediction accuracy over 

statistical models. Greenwood, G. W., (2005)[29] showed 

that neural networks are able to effectively characterize and 

estimate the shear modulus of granular materials. Agrawal 

et al. (1994)[30]; Gribb and Gribb (1994)[31] and Najjar 

and Basheer (1996b)[32] all used neural network 

approaches for estimating the permeability of clay liners. 

Basheer and Najjar (1995)[33] presented neural network 

approaches for soil compaction. 

Other applications include modeling the mechanical 

behavior of medium-to-fine sand (Ellis et al. 1992)[34], 

modeling rate-dependent behavior of clay soils (Penumadu 

et al. (1994)[35], simulating the uniaxial stress-strain 

constitutive behavior of fine-grained soils under both 

monotonic and cyclic loading (Basheer 1998)[36], 

characterizing the undrained stress-strain response of 

Nevada sand subjected to both triaxial compression and 

extension stress paths (Najjar and Ali 1999[37]), predicting 

the axial and volumetric stress-strain behavior of sand 

during loading, unloading and reloading (Zhu and Zaman 

1997)[38], predicting the anisotropic stiffness of granular 

materials from standard repeated load triaxial tests 

(Tutumluer and Seyhan 1998)[39]. 

 

 

8. Input Data Structure 

The learning rate parameter first is defined as α. Any 

higher value of this parameter increases the learning speed 

of the model. However, this condition may lead the 

solution to lack of convergence. A recommended value of 

α is 0.001.  

The input data structure of each learning sample data 

includes eight sample parameters as eo (initial void ratio), 

LL (liquid limit), PI (plasticity index), Gs (solid grain 

density), ω (moisture content), γn (natural soil density), 

OCR (over consolidation ratio), and σ3c (initial mean 

stress). The first line of each data layer includes these eight 

parameters. The second line includes the number of 

measured stress-strain sets during the performed test. The 

final value of strain in the test is an optional value.  

The weighted coefficients in initial weighted coefficients 

matrix and initial bias vector are quite arbitrary and even 

may be taken as constant values. The learning algorithm is 

planed based on the following procedure: 

- Reading data 

- Internal/external proportionality of strain measured 

values 

- Homogenization of data 

- Introducing initial weighted coefficient matrix and bias 

vector as preferred 

- BBP calculations based of proceeding and returning back 

- Error control based on any applicable method such as 

root-square method  

- Continuing in the case of error control or returning to 

BBP for back ward algorithm with new adjusted parameter 

values 

- Transferring data to initial values 

- Presentation of output data 

The learning information include standard triaxial test 

results of CD for q (stress deviator) versus ε1 (axial strain) 

for different OCR values as shown in Figure 7-a,b and also 

CD tests on disturbed samples under different initial 

consolidation mean stress as shown in Figure 7-c. This 

learning information include some CU tests results as q 

(stress deviator) versus ε1 (axial strain) on disturbed 

samples as shown in Figures 8-a,b,c similar to Figures 7-

a,b,c. 

 



Numerical Methods in Civil Engineering, Vol. 1, No. 2, December.2014 

 

 
(a) 

 

 
(b) 

 

 
(c) 

 

Fig.7: learning information of CD tests 

 

 
(a) 

 
(b) 

 

 
(c) 

 
Fig.8: learning information of CU tests 

 

The verified results obtained based on the employed learning 

information include also some standard triaxial CD test results 

as q (stress deviator) versus ε1 (axial strain) and εv (volumetric 

strain) versus ε1 (axial strain) for different OCR values as shown 

in Figure 9. This presented information include also some CU 

tests results as q (stress deviator) versus ε1 (axial strain) and 

P.W.P (pore water pressure) versus ε1 (axial strain) on disturbed 

samples upon different mean stresses as shown in Figures 10.  
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(d) 
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Fig.9: CD test results 
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Fig.10: CU test results 
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9. Sensitivity Investigation 

In artificial neural network method the output parameter 

sensitivity to any of input parameters can be investigated. 

The results of this investigation may present the 

mathematical relation between every of input and output 

parameters while the other parameters are kept constant or 

non-effective. To show this ability the effects of liquid 

limit and plasticity index on shear strength are investigated. 

Figure 11-a, b show the variation of shear strength due to 

changes of liquid limit and plasticity index respectively. 

Accordingly, equation 21 presents strength change versus 

plasticity index. 

 

PIPC ou 0001.011.0/                                       (21)  
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Fig.11: variation of shear strength due to changes of liquid limit 

and plasticity index 

 
In similar investigation by authors, it is found that there 

is no serious change of shear strength in stress-strain curve 

due to grain density and moisture content in this case. This 

condition may be obtained because there has not been any 

information of grain density and moisture content effects in 

teaching process. Figures 12-a, b show the effects of 

natural density and initial void ratio on stress-strain curve 

respectively. Accordingly, increment of natural density and 

reduction in initial void ratio increase shear strength.  
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Fig.12-a, b: the effects of natural density and initial void ratio 

 
Also, there is not any sensitivity on OCR ratio, because 

there has not been any learning of this parameter as input 

information. However, the effects of lateral stress (σ3) is 

shown in Figure 12-c., naturally, the increment of lateral 

pressure caused increases in shear strength.  
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Fig.12-c: the effects of lateral pressure on shear strength. 

 

 
10. Conclusion 

New form of neural network technique is developed and 

tested them in predicting cohesive soil behavior upon 

quadratic function. The results are quite promising in that 

one of our techniques outperforms simple stochastic 

gradient by an order of magnitude in all settings.  
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We also hope to further improve upon these techniques 

through a systematic re-derivation of the conjugate gradient 

method in the linear stochastic setting in future. 

Upon geo-mechanical investigation, eight mechanical 

properties of soil as liquid limit, plasticity index, void ratio, 

natural density, moisture content, OCR, and lateral stress 

are selected as input parameters to predict stress-strain 

curve for south Tehran clay. The input test data were from 

triaxial standard CU and CD tests.  

It is evident from the results that a certain artificial 

neural network method has been applied successfully to 

predict clay behavior. However, accuracy of the predicted 

results is highly related to learning process as well as the 

employed algorithm. Any more conformity of active 

behavioral aspects in teaching process to output aspects, a 

better accuracy is obtained. Despite of interrelation of 

learning input parameter effects, any new aspect effects can 

be easily added in learning process. Furthermore, the 

capability of artificial neural network in learning is quite 

high. In this artificial neural network method the output 

parameter sensitivity to any of input parameters can be 

investigated. This capability is a rational way to investigate 

the relation between any of two dependent/independent 

parameters in certain loading process. 

There are also several areas in which the feasibility of 

artificial neural network method has yet to be tested. In 

many situations in geotechnical engineering, it is possible 

to encounter some types of problems that are very complex 

and not well understood that can be solved by neural 

network method. For most mathematical models that 

attempt to solve such problems, the lack of physical 

understanding is usually supplemented by either 

simplifying the problem or incorporating several 

assumptions into the models. Mathematical models also 

rely on assuming the structure of the model in advance, 

which may be sub-optimal. Consequently, many 

mathematical models fail to simulate the complex behavior 

of most geotechnical engineering problems. In contrast, 

artificial neural network method is based on the data alone 

in which the model can be trained on input-output data 

pairs to determine the structure and parameters of the 

model. In this case, there is no need to neither simplify the 

problem nor incorporate any assumptions. Moreover, 

artificial neural network method can always be updated to 

obtain better results by presenting new training examples as 

new data become available. 

Despite their good performance in many situations, 

artificial neural network method suffer from a number of 

shortcomings, notably, the lack of theory to help with their 

development, the fact that success in finding a good 

solution is not always guaranteed and their limited ability 

to explain the way they use the available information to 

arrive a solution. Consequently, there is a need to develop 

some guidelines, which can help in the design process of 

artificial neural network method. There is also a need for 

more research to give a comprehensive explanation of how 

artificial neural network method arrives at a prediction. 
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