Volume 6, Issue 4 (4-2022)                   NMCE 2022, 6(4): 59-66 | Back to browse issues page


XML Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Gavzan Daroonkola M R, Ahmadi M T. Push-over analysis of concrete gravity dams due to flood inflow. NMCE. 2022; 6 (4) :59-66
URL: http://nmce.kntu.ac.ir/article-1-396-en.html
Professor, Faculty of Civil and Environmental Engineering, Tarbiat Modares University, P.O. Box 14115-397, Tehran, Iran. , mahmadi@modares.ac.ir
Abstract:   (227 Views)
This study numerically predicts the failure scenario of a cracked concrete gravity dam through a push-over nonlinear analysis. The mixed-mode Linear Elastic Fracture Mechanics (LEFM) was employed using the extended finite element method (XFEM). The dam base was considered to be fully fixed without any foundation effects. The hydrostatic pressure on the dam's upstream face was increased incrementally. The failure scenario type of the concrete gravity dams with an initial crack at an arbitrary level exhibited a ductile manner. A mixed-mode crack path with a positive mode II was observed in all initial crack levels. Based on the results, it can be claimed that provided water intrusion prevented, "cracked" concrete gravity dams may not be at noticeable risk of failure due to flood inflow.
Full-Text [PDF 443 kb]   (75 Downloads)    
Type of Study: Research | Subject: General
Received: 2021/12/2 | Revised: 2021/12/27 | Accepted: 2021/12/28

References
1. Hariri-Ardebili, M.A., Concrete dams: from failure modes to seismic fragility, Encyclopedia of earthquake engineering Berlin: Springer Verlag, 2016, 1-26. [DOI:10.1007/978-3-642-36197-5_409-1]
2. Azizan, N.Z.N., T.A. Majid, F.M. Nazri, D. Maity., Static pushover analysis for Koyna dam, International Journal of Civil Engineering and Geo-Environmental, Special Publication for NCWE2017, 2017, 33-37.
3. Kamali, N., S. Vahdani., Seismic Capacity Diagram of Concrete Gravity Dams with Energy Balance Method,
4. Alembagheri, M., M. Ghaemian., Seismic assessment of concrete gravity dams using capacity estimation and damage indexes, Earthquake Engineering & Structural Dynamics 42(1), 2013, 123-144. [DOI:10.1002/eqe.2196]
5. Bhattacharjee, S.S., P. Léger., Fracture response of gravity dams due to rise of reservoir elevation, Journal of Structural Engineering 121(9), 1995, 1298-1305. [DOI:10.1061/(ASCE)0733-9445(1995)121:9(1298)]
6. Dias, I.F., J. Oliver, J. V Lemos, O. Lloberas-Valls., Modeling tensile crack propagation in concrete gravity dams via crack-path-field and strain injection techniques, Engineering Fracture Mechanics 154, 2016, 288-310. [DOI:10.1016/j.engfracmech.2015.12.028]
7. Khoei, A., Extended finite element method: theory and applications, John Wiley & Sons, 2014. [DOI:10.1002/9781118869673]
8. Lempérière, F., Dams and floods, Engineering 3(1), 2017, 144-149. [DOI:10.1016/J.ENG.2017.01.018]
9. Mashayekhi, M., H. Mostafaei., Determining the Critical Intensity for Crack Initiation in Concrete Arch Dams by Endurance Time Method, International Journal of Numerical Methods in Civil Engineering 5(2), 2020, 21-32. [DOI:10.52547/nmce.5.2.21]
10. Mostafaei, H., F. Behnamfar, M. Alembagheri., Nonlinear analysis of stability of rock wedges in the abutments of an arch dam due to seismic loading, Structural monitoring and maintenance 7(4), 2020, 295-317.
11. Mostafaei, H., M. Ghamami, P. Aghabozorgi., Modal identification of concrete arch dam by fully automated operational modal identification, Structures, (2021), 228-236. [DOI:10.1016/j.istruc.2021.03.028]
12. Aghajanzadeh, S.M., M. Ghaemian., Nonlinear Dynamic Analysis of Concrete Gravity Dam Considering Elastoplastic Constitutive Model for Foundation, Scientia Iranica 20(6), 2013, 1676-1684.
13. Aghajanzadeh, S.M., H. Mirzabozorg, M. Ghaemian., Foundation material nonlinearity in dam-reservoir-massed foundation coupled problems, Ingegneria sismica 34(4), 2017, 3-29.
14. Anderson, T.L., Fracture Mechanics: Fundamentals and Applications, Fourth Edition, CRC press, 2017. [DOI:10.1201/9781315370293]
15. Mohammadi, S., Extended finite element method: for fracture analysis of structures, John Wiley & Sons, 2008. [DOI:10.1002/9780470697795]
16. Cherepanov, G.P., Crack propagation in continuous media, Journal of Applied Mathematics and Mechanics 31(3), 1967, 476-488. [DOI:10.1016/0021-8928(67)90034-2]
17. Rice, J.R., A path independent integral and the approximate analysis of strain concentration by notches and cracks, Journal of Applied Mechanics, Transactions ASME 35(2), 1964, 379-388. [DOI:10.1115/1.3601206]
18. Li, F.Z., C.F. Shih, A. Needleman., A comparison of methods for calculating energy release rates, Engineering fracture mechanics 21(2), 1985, 405-421. [DOI:10.1016/0013-7944(85)90029-3]
19. Erdogan, F., G.C. Sih., On the crack extension in plates under plane loading and transverse shear, Journal of Fluids Engineering, Transactions of the ASME 85(4), 1963, 519-525. [DOI:10.1115/1.3656897]
20. Zhuang, Z., Z. Liu, B. Cheng, J. Liao., Extended finite element method: Tsinghua University Press computational mechanics series, Academic Press, 2014. [DOI:10.1016/B978-0-12-407717-1.00001-7]
21. Bažant, Z.P., J. Planas., FRACTURE AND SIZE EFFECT in Concrete and Other Quasibrittle Materials, CRC press, 2019. [DOI:10.1201/9780203756799]
22. Sha, S., G. Zhang., Modeling of hydraulic fracture of concrete gravity dams by stress-seepage-damage coupling model, Mathematical Problems in Engineering 2017, 2017. [DOI:10.1155/2017/8523213]

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author