Volume 6, Issue 4 (6-2022)                   NMCE 2022, 6(4): 47-58 | Back to browse issues page


XML Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Rooshenas A, Barghian M. Seismic behavior of cable braces strengthened with a central steel plate. NMCE. 2022; 6 (4) :47-58
URL: http://nmce.kntu.ac.ir/article-1-392-en.html
1- M.Sc., Department of Civil Engineering, University of Tabriz, Tabriz, Iran. , arash_rooshenas@yahoo.com
2- Associate Professor, Department of Civil Engineering, University of Tabriz, Tabriz, Iran.
Abstract:   (371 Views)
This research suggests a novel method to use steel cables as a structural bracing system. The Moment Resisting Frame (MRF) works in tandem with the cable bracings when this method is used. The suggested bracing model can address the fundamental problem of current cable bracing methods, namely the lack of flexibility while keeping costs to a minimum. This approach requires no additional equipment, and despite the minor alterations to the structure, it uses MRF’s full flexibility by delaying the brace action while minimizing substantial and undesirable displacements. This bracing method combines the major advantages of MRFs with cable bracing. For 1, 3, and 6-story 2D frames, the performance of frames that use the provided bracing mechanism was investigated. The numerical results of the dynamic analyses done for this study reveal that the proposed bracing approach was successful for the seismic protection of the structure. The relative displacement of the floors is substantially decreased when using the suggested method, yet the designer may make the structure’s behavior predictable by adjusting the model specifications. The fluctuations in axial forces and moments transferred to the beams and columns, as well as the forces applied to the structural cables, and most importantly, the stresses subjected to the central plate, are investigated in this study. Another advantage of this research is that it demonstrates how this method may lead all cables to share a considerable portion of the load-bearing capacity.
Full-Text [PDF 1043 kb]   (126 Downloads)    
Type of Study: Research | Subject: Special
Received: 2021/11/5 | Revised: 2022/01/22 | Accepted: 2022/01/25

References
1. Q. Xie, State of the art of buckling-restrained braces in Asia, Constructional Steel Research, 61(6) (2005) 727-748. [DOI:10.1016/j.jcsr.2004.11.005]
2. F. Bartera, R. Giacchetti, Steel dissipating braces for upgrading existing building frames, Constructional Steel Research, 60(3-5) (2004) 751-769. [DOI:10.1016/S0143-974X(03)00141-X]
3. H. Tamai, T. Takamatsu, Cyclic loading tests on a non-compression brace considering performance-based seismic design, Constructional Steel Research, 61(9) (2005) 1301-1317. [DOI:10.1016/j.jcsr.2005.01.009]
4. A.A. Golafshani, E.K. Rahani, M.R. Tabeshpour, A new high performance semi-active bracing system, Engineering Structures, 28(14) (2006) 1972-1982. [DOI:10.1016/j.engstruct.2006.03.032]
5. K. Feyrer, Wire ropes; tension, endurance, reliability, Springer, 2007. [DOI:10.1007/978-3-540-33831-4]
6. J. Matteo, G. Deodatis, D. Billington, Safety analysis of suspension-bridge cables: Williamsburg bridge, Structural Engineering, 120(11) (1994) 3197-3211. [DOI:10.1061/(ASCE)0733-9445(1994)120:11(3197)]
7. C. Cremona, M. Elachachi, D. Breysse, S. Yotte, Probabilistic assessment of cable residual strength, in: 5th Bridge Management: Inspection, maintenance, assessment and repair, 2018, pp. 468-475.
8. S.M. Elachachi, D. Breysse, S. Yotte, C. Cremona, A probabilistic multi-scale time dependent model for corroded structural suspension cables, Probabilistic Engineering Mechanics, 21(3) (2006) 235-245. [DOI:10.1016/j.probengmech.2005.10.006]
9. J. Xu, W. Chen, Behavior of wires in parallel wire stayed cable under general corrosion effects, Constructional Steel Research, 85 (2013) 40-47. [DOI:10.1016/j.jcsr.2013.02.010]
10. G.F. Giaccu, L. Caracoglia, A displacement-based approach for determining non-linear effects on pre-tensioned-cable cross-braced structures, Sound and Vibration, 394 (2017) 465-481. [DOI:10.1016/j.jsv.2017.01.008]
11. J.N. Richardson, G. Nordenson, R. Laberenne, R. Filomeno Coelho, S. Adriaenssens, Flexible optimum design of a bracing system for façade design using multi-objective Genetic Algorithms, Automation in Construction, 32 (2013) 80-87. [DOI:10.1016/j.autcon.2012.12.018]
12. R.A.M.G. Tabar, F.R. Nodeh, An overview of pros and cons of zipper braced frames, Current World Environment, 10(Special Issue 1) (2015) 106-110. [DOI:10.12944/CWE.10.Special-Issue1.15]
13. M. Razavi, M.R. Sheidaii, Seismic performance of cable zipper-braced frames, Constructional Steel Research, 74 (2012) 49-57. [DOI:10.1016/j.jcsr.2012.02.007]
14. Y. Ozcelik, A. Saritas, P.M. Clayton, Comparison of chevron and suspended-zipper braced steel frames, Constructional Steel Research, 119 (2016) 169-175. [DOI:10.1016/j.jcsr.2015.12.019]
15. C.-S. Yang, R.T. Leon, R. DesRoches, Design and behavior of zipper-braced frames, Engineering Structures, 30(4) (2008) 1092-1100. [DOI:10.1016/j.engstruct.2007.06.010]
16. D.M. Patil, K.K. Sangle, Seismic behaviour of different bracing systems in high rise 2-d steel buildings, Structures, 3 (2015) 282-305. [DOI:10.1016/j.istruc.2015.06.004]
17. F.C. Blebo, D.A. Roke, Seismic-resistant self-centering rocking core system, Engineering Structures, 101 (2015) 193-204. [DOI:10.1016/j.engstruct.2015.07.016]
18. S. Sorace, G. Terenzi, An advanced seismic protection technology: The damped cable system, in: Advances in Structures-Steel, Concrete, Composite and Aluminium, Proc. of ASSCCA'03 Conference, 2003, pp. 1185 - 1191.
19. Jerret Structures, in, www.jerretStructures.com.
20. M. Lotfollahi, M.M. Alinia, Effect of tension bracing on the collapse mechanism of steel moment frames, Constructional Steel Research, 65(10-11) (2009) 2027-2039. [DOI:10.1016/j.jcsr.2009.06.003]
21. M.C. Phocas, K. Alexandrou, Numerical analysis and cable activation in hybrid bending-active structures with multiple cables, Engineering Structures, 174 (2018) 561-572. [DOI:10.1016/j.engstruct.2018.07.089]
22. M.C. Phocas, A. Pocanschi, Steel frames with bracing mechanism and hysteretic dampers, Earthquake Engineering Structures, 32 (2003) 15. [DOI:10.1002/eqe.253]
23. X. Hou, H. Tagawa, Displacement-restraint bracing for seismic retrofit of steel moment frames, Constructional Steel Research, 65(5) (2009) 1096-1104. [DOI:10.1016/j.jcsr.2008.11.008]
24. H. Tagawa, X. Hou, Seismic retrofit of ductile moment resisting frames using wire-rope bracing, in: 8th Pacific Conference on Earthquake Engineering, Singapore, 2007, pp. 8.
25. M. Kurata, Strategies for rapid seismic hazard mitigation in sustainable infrastructure systems, Ph.D. Thesis, Georgia Institute of Technology, 2009.
26. M. Kurata, R.T. Leon, R. DesRoches, Rapid seismic rehabilitation strategy: Concept and testing of cable bracing with couples resisting damper, Structural Engineering, 138(3) (2012) 354-362. [DOI:10.1061/(ASCE)ST.1943-541X.0000401]
27. N. Fanaie, S. Aghajani, E. Dizaj, Theoretical assessment of the behavior of cable bracing system with central steel cylinder, Advances in Structural Engineering, 19(3) (2016) 463-472. [DOI:10.1177/1369433216630052]
28. N. Fanaie, S. Aghajani, E. Afsar Dizaj, Strengthening of moment-resisting frame using cable-cylinder bracing, Advances in Structural Engineering, 19(11) (2016) 1736-1754. [DOI:10.1177/1369433216649382]
29. N. Fanaie, N. Zafari, Seismic study of cable-cylinder bracing under near field records, in: 2nd International Conference on Steel & Structure, Tehran, Iran, 2017.
30. N. Fanaie, N. Zafari, Sensitivity analysis on response modification factor of new cable-cylinder bracing systems, Earthquake Engineering, 23(4) (2019) 648-668. [DOI:10.1080/13632469.2017.1326419]
31. S. Abhari, M. Barghian, Theoretical assessment of the behavior of a cable bracing system with a central steel plate, AUT Journal of Civil Engineering, 3(1) (2019) 37-48.
32. K. Shakeri, K. Tarbali, M. Mohebbi, An adaptive modal pushover procedure for asymmetric-plan buildings, Engineering Structures, 36 (2012) 160-172. [DOI:10.1016/j.engstruct.2011.11.032]
33. A. Rooshenas, Comparing pushover methods for irregular high-rise structures, partially infilled with masonry panels, Structures, 28 (2020) 337-353. [DOI:10.1016/j.istruc.2020.08.073]
34. S. Li, Z. Zuo, C. Zhai, L. Xie, Comparison of static pushover and dynamic analyses using RC building shaking table experiment, Engineering Structures, 136 (2017) 430-440. [DOI:10.1016/j.engstruct.2017.01.033]
35. M.A. Amini, M. Poursha, A non-adaptive displacement-based pushover procedure for the non-linear static analysis of tall building frames, Engineering Structures, 126 (2016) 586-597. [DOI:10.1016/j.engstruct.2016.08.009]
36. A. Rooshenas, Investigating the effects of masonry infill panels on high-rise structures, Structures, 35 (2022) 106-117. [DOI:10.1016/j.istruc.2021.10.077]
37. CSI, SAP2000, in: Integrated structural analysis and design software, Computers and Structures Inc, Berkeley, CA, 2018.
38. Pacific Earthquake Engineering Research, in, peer.berkeley.edu.
39. Iranian code of practice for seismic resistant design of buildings - Standard No 2800, Iranian Road, Housing and Urban Development Research Center, 2016.

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author