Volume 5, Issue 4 (6-2021)                   NMCE 2021, 5(4): 67-76 | Back to browse issues page


XML Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Sadri Moghaddam S, Pirali M R. Modeling and calibration of a full-scale wastewater treatment plant using GPS-X model (A case study of Tehran). NMCE 2021; 5 (4) :67-76
URL: http://nmce.kntu.ac.ir/article-1-391-en.html
1- Assistant Professor, Department of Civil Engineering, K.N. Toosi University of Technology, Tehran, Iran. , sadrimoghaddam@kntu.ac.ir
2- MSc, Department of Civil and Environmental Engineering, Amirkabir University of Technology (AUT), Tehran, Iran.
Abstract:   (571 Views)
Wastewater treatment plants (WWTPs) play a significant role in sustainability due to integration of resource recovery and health management during clean water production. Mathematical modeling has become a vital tool for sustainable wastewater management, especially for simulating complex procedures involved in activated sludge processes. Wastewater process modeling provides more options for upgrades and improvements of operational controls. In this paper, a systematic approach was undertaken to create a plant-wide model for a full-scale plant located in Tehran, Iran, namely the Southern Tehran WWTP, using GPS-X software. The characterization of the influent composition to satisfy the mass balance is the most critical step of modeling, which can have significant influence on simulation accuracy. Therefore, the influent wastewater was initially characterized and carefully analyzed carefully. Then, the model has been calibrated followed by model validation using the collected data. For calibration of the model, the sensitivity of various stoichiometric and kinetic parameters in the GPS-X was analyzed and screened. In this regard, the average absolute relative error was employed to show the agreement between the simulated and measured values. Finally, the calibrated model was validated using the actual input and output data. The results indicate that the model’s accuracy was acceptable, and therefore the developed model can be applied for future studies.
Full-Text [PDF 804 kb]   (399 Downloads)    
Type of Study: case report | Subject: Special
Received: 2021/03/23 | Revised: 2021/04/27 | Accepted: 2021/05/14

References
1. Aghalari, Z., Dahms, H.U., Sillanpӓӓ, M., Sosa-Hernandez, J.E., Parra-Saldívar, R., 2020. Effectiveness of wastewater treatment systems in removing microbial agents: a systematic review, Glob. Health, 16 (1), 13. [DOI:10.1186/s12992-020-0546-y] [DOI:10.1186/s12992-020-0546-y]
2. Henze, M., Loosdrecht, M.C.M., Ekama, G.A., Brdjanovic, D., 2008. Biological Wastewater Treatment Principles, Modeling and Design, IWA Publishing, London. [DOI:10.2166/9781780401867] [DOI:10.2166/9781780401867]
3. Arenas‐Sánchez, A., Rico, A., & Vighi, M., 2016. Effects of water scarcity and chemical pollution in aquatic ecosystems: state of the art. Science of the Total Environment, 572, 390-403. [DOI:10.1016/j.scitotenv.2016.07.211] [DOI:10.1016/j.scitotenv.2016.07.211]
4. Herrera-Pantoja, M., Hiscock, K.M., 2015. Projected impacts of climate change on water availability indicators in a semi-arid region of central Mexico. Environ. Sci. Pol. 54, 81-89. [DOI:10.1016/j.envsci.2015.06.020] [DOI:10.1016/j.envsci.2015.06.020]
5. Davis, J., Sim, L., Chambers, J., 2010. Multiple stressors and regime shifts in shallow aquatic ecosystems in antipodean landscapes, Freshw. Biol., 55, 5-18. [DOI:10.1111/j.1365-2427.2009.02376.x] [DOI:10.1111/j.1365-2427.2009.02376.x]
6. Vörösmarty, C.J., McIntyre, P., Gessner, M.O., Dudgeon, D., Prusevich, A., Green, P., Glidden, S., Bunn, S.E., Sullivan, C.A., Liermann, C.R., 2010. Global threats to human water security and river biodiversity, Nature 467 (7315), 555-561. [DOI:10.1038/nature09440] [DOI:10.1038/nature09440]
7. Petrovic, M., Ginebreda, A., Acuña, V., Batalla, R.J., Elosegi, A., Guasch, H., de Alda, M.L., Marcé, R., Muñoz, I., Navarro-Ortega, A., 2011. Combined scenarios of chemical and ecological quality under water scarcity in Mediterranean rivers, TrAC Trends Anal. Chem. 30 (8), 1269-1278. [DOI:10.1016/j.trac.2011.04.012] [DOI:10.1016/j.trac.2011.04.012]
8. Sepúlveda-Mardones, M., Campos, J.L., Magrí, A., Vidal, G., 2019. Moving forward in the use of aerobic granular sludge for municipal wastewater treatment: an overview. Reviews in Environmental science and Bio/Technology 18 (4), 741-769. [DOI:10.1007/s11157-019-09518-9] [DOI:10.1007/s11157-019-09518-9]
9. Tchobanoglous, G., Burton, F., Stensel, H.D., 1991. Wastewater engineering: an overview. Wastewater Eng. Treat. Reuse 1-24.
10. Heijnen, J.J., van Loosdrecht M.C.M., and van Veldhuizen, H.M., 1999. Modelling biological phosphorous and nitrogen removal in a full scale activated sludge process, Water Research, 33 (16) 3459-3468. [DOI:10.1016/S0043-1354(99)00064-0] [DOI:10.1016/S0043-1354(99)00064-0]
11. Drewnowski1, J., Zaborowska E., and Hernandez De Vega, C., 2018. Computer Simulation in Predicting Biochemical Processes and Energy Balance at WWTPs Water, Wastewater and Energy in Smart Cities, E3S Web of Conferences 30(3): 03007. [DOI:10.1051/e3sconf/20183003007] [DOI:10.1051/e3sconf/20183003007]
12. Elawwad, A., Matta, M., Abo-Zaid, M., Abdel-Halim, H., 2019. Plant-wide modeling and optimization of a large-scale WWTP using BioWin's ASDM model, Journal of Water Process Engineering, 31, 100819. [DOI:10.1016/j.jwpe.2019.100819] [DOI:10.1016/j.jwpe.2019.100819]
13. Waki, M., Yasuda, T., Fukumoto, Y., Béline, F., Magrí, A., 2018. Treatment of swine wastewater in continuous activated sludge systems under different dissolved oxygen conditions: reactor operation and evaluation using modelling. Bioresour. Technol. 250, 574-582. [DOI:10.1016/j.biortech.2017.11.078] [DOI:10.1016/j.biortech.2017.11.078]
14. Wu, X., Yang, Y., Wu, G., Mao, J., Zhou, T., 2016. Simulation and optimization of a coking wastewater biological treatment process by activated sludge models (ASM). J. Environ. Manag. 165, 235-242. [DOI:10.1016/j.jenvman.2015.09.041] [DOI:10.1016/j.jenvman.2015.09.041]
15. Gernaey, K.V., van Loosdrecht, M.C., Henze, M., Lind, M., Jørgensen, S.B., 2004. Activated sludge wastewater treatment plant modelling and simulation: state of the art. Environ. Model Softw. 19 (9), 763-783. [DOI:10.1016/j.envsoft.2003.03.005] [DOI:10.1016/j.envsoft.2003.03.005]
16. Zeng, M., Soric, A., Roche, N., 2015. Modeling partial nitrification and denitrification in a hybrid biofilm reactor: Calibration by retention time distribution and respirometric tests, Environ. Sci. Pollut. Res., 22, 12849-12860. [DOI:10.1007/s11356-014-3667-0] [DOI:10.1007/s11356-014-3667-0]
17. Jasim, N.A., 2020. The design for wastewater treatment plant (WWTP) with GPS X modelling. Cogent Eng., 7. [DOI:10.1080/23311916.2020.1723782] [DOI:10.1080/23311916.2020.1723782]
18. Koch, G., Kühni, M., Gujer, W., Siegrist, H., 2000. Calibration and validation of activated sludge model no. 3 for Swiss municipal wastewater. Water Res. 34 (14), 3580-3590. [DOI:10.1016/S0043-1354(00)00105-6] [DOI:10.1016/S0043-1354(00)00105-6]
19. Vitanza, R., Colussi, I., Cortesi, A., Gallo, V., 2016. Implementing a respirometry-based model into BioWin software to simulate wastewater treatment plant operations. J. Water Process Eng. 9, 267-275. [DOI:10.1016/j.jwpe.2015.02.007] [DOI:10.1016/j.jwpe.2015.02.007]
20. Ji, X., Liu, Y., Zhang, J., Huang, D., Zhou, P., Zheng, Z., 2019. Development of model simulation based on BioWin and dynamic analyses on advanced nitrate nitrogen removal in deep bed denitrification filter. Bioprocess Biosyst. Eng. 42 (2), 199-212. [DOI:10.1007/s00449-018-2025-x] [DOI:10.1007/s00449-018-2025-x]
21. Noori, Z., 2018. Investigation of effluent quality of Ekbatan wastewater treatment plant for farm and green space irrigation, Journal of land management, 6(1) 95-102.
22. Rafati, M., Pazouki, M., Ghadamian, H., Hosseinnia A., Jalilzadeh A., 2018. Effect of operating parameters on the performance of wastewater treatment plant (Case study: The southern Tehran wastewater treatment), Advances in Environmental Technology, 4, 211-221.
23. Henze, M., Gujer, W., Mino, T., van Loosedrecht, M., 2015. Activated Sludge Models ASM1, ASM2, ASM2d and ASM3, IWA Publishing: London, UK, V. 5, ISBN 9781780402369. [DOI:10.2166/9781780402369] [DOI:10.2166/9781780402369]
24. US EPA, 1987. QUAL2E - The Enhanced Stream Water Quality Model EPA/823/B-95/ 003. Environmental Research Laboratory, Athens, GA, USA.
25. Petersen, B., Gernaey, K., Henze, M., Vanrolleghem, P.A., 2003. Calibration of activated sludge models: a critical review of experimental designs. In: Agathos, S.N., Reineke, W. (Eds.), Biotechnology for the Environment: Wastewater Treatment and Modelling. Waste Gas Handling. Kluwer Academic Publishers, Dordrecht. [DOI:10.1007/978-94-017-0932-3_5] [DOI:10.1007/978-94-017-0932-3_5]
26. Brun, R., Kuhni, M., Siegrist, H., Gujer, W., Reichert, P., 2002. Practical identifiability of ASM2d parameters - systematic selection and tuning of parameters subsets. Water Res. 36 (16), 4113-4127. [DOI:10.1016/S0043-1354(02)00104-5] [DOI:10.1016/S0043-1354(02)00104-5]
27. Liwarska-Bizukojc, E., Olejnik, D., Biernacki, R., Ledakowicz, S., 2011. Calibration of a complex activated sludge model for the full-scale wastewater treatment plant, Bioprocess and Biosystems Engineering, 34, 659-670. [DOI:10.1007/s00449-011-0515-1] [DOI:10.1007/s00449-011-0515-1]
28. Sin, G., Van Hulle, S.W.H., De Pauw, D.J.W., van Griensven, A., Vanrolleghem, P.A., 2005. A critical comparison of systematic calibration protocols for activated sludge models: a SWOT analysis. Water Res. 39 (12), 2459-2474. [DOI:10.1016/j.watres.2005.05.006] [DOI:10.1016/j.watres.2005.05.006]
29. Liwarska-Bizukojc, E., Biernacki R., 2010. Identification of the most sensitive parameters in the activated sludge model implemented in BioWin software, Bioresource Technology, 101, 7278-7285. [DOI:10.1016/j.biortech.2010.04.065] [DOI:10.1016/j.biortech.2010.04.065]
30. Sedran, M.A., Mehrota, A.S., Pincince, A.B., 2006. The dangers of uncalibrated activated sludge simulations packages, in: Paper Presented at the 2006 Water Environment Foundation Conference, Dallas, TX. [DOI:10.2175/193864706783751546] [DOI:10.2175/193864706783751546]
31. Vitanza, R., Colussi, I., Cortesi A., Gallo V., 2016. Implementing a respirometry-based model into BioWin software to simulate wastewater treatment plant operations, Journal of Water Process Engineering, 9, 267-275. [DOI:10.1016/j.jwpe.2015.02.007] [DOI:10.1016/j.jwpe.2015.02.007]
32. Hu, X., Xie, L., Mi, C., Yang, D.-h., 2014. Calibration and validation of an activated sludge model for a pilot-scale anoxic/anaerobic/aerobic/post-anoxic process. Journal of Zhejiang University SCIENCE A, 15 (9), 743-752. [DOI:10.1631/jzus.A14b0066] [DOI:10.1631/jzus.A14b0066]
33. Elawwad, A., Zaghloul, M.S., Abdel-Halim, H., 2017. Simulation of municipal-industrial full scale WWTP in an arid climate by application of ASM3, J. Water Reuse Desal., 7 (1), 37-44. [DOI:10.2166/wrd.2016.154] [DOI:10.2166/wrd.2016.154]
34. Hulsbeek, J.J., Kruit, J., Roeleveld, P., van Loosdrecht, M., 2002. A practical protocol for dynamic modelling of activated sludge systems, Water Sci. Technol. 45 (6), 127-136. [DOI:10.2166/wst.2002.0100] [DOI:10.2166/wst.2002.0100]
35. Aguilar, M., Lloréns, M., Fernández-Garrido, J., Pérez-Marín, A., Ortuño, J., Meseguer, V., 2020. Heavy metals effect on the heterotrophic activity of activated sludge. Int. J. Environ. Sci. Technol., 17 (5), 3111-3118. [DOI:10.1007/s13762-020-02704-1] [DOI:10.1007/s13762-020-02704-1]
36. US EPA, 1993. Manual Nitrogen control EPA/625/R-93/010. US EPA, Washington, DC, USA.

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author