Volume 5, Issue 3 (3-2021)                   NMCE 2021, 5(3): 67-77 | Back to browse issues page


XML Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Sam Khaniani A, Farzaneh S. Tropospheric delay efficiency from CSRS-PPP online service for meteorologists in Iran. NMCE 2021; 5 (3) :67-77
URL: http://nmce.kntu.ac.ir/article-1-388-en.html
1- Assistant Professor, Department of Surveying, Faculty of Civil Engineering, Noshirvani University of Technology, Babol, Mazandaran, Iran , ali.sam@nit.ac.ir
2- Assistant Professor, School of Surveying and Geospatial Engineering, College of Engineering, University of Tehran, North Kargar Street, Central Building of the College of Engineering, 1439957131 Tehran, Iran
Abstract:   (443 Views)
Earth’s tropospheric delay is a valuable parameter in meteorological and climatic applications and studies such as short-term weather forecasting, monitoring of severe weather conditions, and long-term climate change. One of the methods for estimating the zenith delay of the Earth’s atmosphere is the processing of the GNSS observations. In addition to estimating the station position as the main target of processing the observations, the Zenith Total Delay (ZTD) values of the signals received from the satellite are also estimated simultaneously. Processing GPS observations is complicated and costly for meteorologists other than geodesy professionals. Recently, free online GPS observation processing services have been developed. In this study, ZTD estimates of the CSRS-PPP online service in the Iranian region were evaluated to examine the potential of this data for use by meteorologists. For this purpose, 8-day observations from 46 permanent GPS stations distributed in different parts of Iran were used. Also, the ZTD values ​​obtained from the GAMIT software with differential processing method were considered as trustworthy values. In general, the tropospheric delay estimates of the CSRS-PPP service showed high agreement with the corresponding values ​​obtained from the GAMIT software. The mean correlation coefficient, RMSE, and bias of the online service estimates were 0.976, 3.38, and 0.42 mm, respectively, compared to the differential method. Based on the results of this research, it can be concluded that the ZTD products of the CSRS-PPP online service, which provide free processing for the general public, have acceptable accuracy and can be used for many studies.
Full-Text [PDF 774 kb]   (267 Downloads)    
Type of Study: Research | Subject: Special
Received: 2020/12/18 | Revised: 2021/02/14 | Accepted: 2021/03/10

References
1. Lau L and Cross P. (2007). Investigation into phase multipath mitigation techniques for high precision positioning in difficult environments. J. Navig. 60, 457-482. [DOI:10.1017/S0373463307004341]
2. Lau L, Cross P, Steen M. (2012). Flight tests of error-bounded heading and pitch determination with two GPS receivers. IEEE Trans. Aerosp. Electron. Syst. 48, 388-404. [DOI:10.1109/TAES.2012.6129643]
3. Essen L, Froome D.K. (1951). Dielectric constant and refractive index of air and its principal constituents at 24,000 mc/d. Nature 167, 512-513. [DOI:10.1038/167512a0]
4. Fernandes M.J, Lazaro C, Ablain M, Pires N. (2015). Improved wet path delays for all ESA and reference altimetric missions. Remote Sens. Environ. 169, 50-74. [DOI:10.1016/j.rse.2015.07.023]
5. Awange J.L. (2012). Environmental Monitoring Using GNSS: Global Navigation Satellite Systems, Springer: Heidelberg, Germany.
6. Bevis M, Businger S, Chiswell S. (1994). Gps meteorology: Mapping zenith wet delays onto precipitable water. J. Appl. Meteorol. 33, 379-386. https://doi.org/10.1175/1520-0450(1994)033<0379:GMMZWD>2.0.CO;2 [DOI:10.1175/1520-0450(1994)0332.0.CO;2]
7. Rocken C, Hove T.V, Johnson J, Solheim F, Ware R, Bevis M and Businger S. (1995). GPS/STORM-GPS sensing of atmospheric water vapor for meteorology. Journal of Atmospheric and Oceanic Technology, 12(3), 468-478. https://doi.org/10.1175/1520-0426(1995)012<0468:GSOAWV>2.0.CO;2 [DOI:10.1175/1520-0426(1995)0122.0.CO;2]
8. Nilsson T and Elgered G. (2008). Long‐term trends in the atmospheric water vapor content estimated from ground‐based GPS data. Journal of Geophysical Research: Atmospheres, 113(D19). [DOI:10.1029/2008JD010110]
9. Hurter F, Maier O. (2014). Tropospheric profiles of wet refractivity and humidity from the combination of remote sensing data sets and measurements on the ground. Atmos. Meas. Tech. 6, 3083-3098. [DOI:10.5194/amt-6-3083-2013]
10. Dong Z, Jin S. (2018). 3-D water vapor tomography in Wuhan from GPS, BDS and GLONASS observations. Remote Sens. 2018, 10, 62. [DOI:10.3390/rs10010062]
11. Khaniani A.S, Motieyan H, and Mohammadi A. (2021). Rainfall forecast based on GPS PWV together with meteorological parameters using neural network models. Journal of Atmospheric and Solar-Terrestrial Physics, 214, 105533. [DOI:10.1016/j.jastp.2020.105533]
12. [12] Dawidowicz K and Krzan G. (2014). Coordinate estimation accuracy of static precise point positioning using on-line PPP service, a case study. Acta Geod. Geophys. 49, 37-55. [DOI:10.1007/s40328-013-0038-0]
13. Guo Q. (2015). Precision comparison and analysis of four online free PPP services in station positioning and tropospheric delay estimation. GPS Solut. 19, 537-544. [DOI:10.1007/s10291-014-0413-5]
14. El-Mewafi M, Zarzoura F.H and Saber M. (2019). Studying and Assessment the Tropospheric Delay at Different Weather Conditions in Egypt. Journal of Engineering and Scientific Research 6(10):185-198
15. Mendez Astudillo J, Lau L, Tang Y. T, Moore T. (2018). Analysing the zenith tropospheric delay estimates in on-line precise point positioning (PPP) services and PPP software packages. Sensors, 18(2), 580. [DOI:10.3390/s18020580]
16. Abdallah A, Schwieger V. (2016). Static GNSS precise point positioning using free online services for Africa. Survey review, 48(346), 61-77. [DOI:10.1080/00396265.2015.1097595]
17. Arabi M, Nankali H.R. (2017). Accuracy Assessment of Online PPP Services in Static Positioning and Zenith Tropospheric Delay (ZTD) Estimation. GEJ. 8 (3) :59-69
18. Bevis M, Businger S, Herring T.A, Rocken C, Anthes R.A. Ware R.H. (1992). GPS meteorology: Remote sensing of the atmospheric water vapor using the Global Positioning System. J Geophys Res 97 (D14), 15 787-15 801 [DOI:10.1029/92JD01517]
19. Bai, Z. (2004). Near real-time GPS sensing of atmospheric water vapour, Faculty of Built Environment and Engineering, Queensland University of Technology, Brisbane, Australia
20. Gendt G, Dick G, Reigber C, Tomassini M, Liu Y and Ramatschi, M. (2004). Near real time GPS water vapor monitoring for numerical weather prediction in Germany. Journal of the Meteorological Society of Japan. Ser. II, 82(1B), 361-370. [DOI:10.2151/jmsj.2004.361]
21. Hugentobler, U, Dach, R, Fridez, P, Meindl, M. (2007). Bernese GPS Software Version 5.0. Astronomical Institute, University of Berne.
22. Zumberge J.F, Heflin M.B, Jefferson D.C, Watkins M.M and Webb F.H. (1997). Precise point positioning for the efficient and robust analysis of GPS data from large networks. J. Geophys. Res. 12, 5005-5017. [DOI:10.1029/96JB03860]
23. Byun S.H, Bar-Sever Y.E. (2009). A new type of troposphere zenith path delay product of the international GNSS service. J. Geod. 83, 367-373. [DOI:10.1007/s00190-008-0288-8]
24. Guerova G, Jones J, Douša J, Dick G, Haan S.D, Pottiaux E and Bender M. (2016). Review of the state of the art and future prospects of the ground-based GNSS meteorology in Europe. Atmospheric Measurement Techniques, 9(11), 5385-5406. [DOI:10.5194/amt-9-5385-2016]
25. Bender, M, Stosius, R, Zus, F, Dick, G, Wickert, J, and Raabe A. (2011). GNSS water vapour tomography-Expected improvements by combining GPS, GLONASS and Galileo observations. Advances in Space Research, 47(5), 886-897. [DOI:10.1016/j.asr.2010.09.011]
26. Khaniani A.S and Ghahremani, M. (2018). Estimation of GPS Tropospheric delays using different data processing strategies in Iran. Annals of Geophysics, 61(6), PA663-PA663. [DOI:10.4401/ag-7625]
27. Iwabuchi T, Naito I, Mannoji N. (2002). A comparison of Global Positioning System retrieved precipitable water vapor with the numerical weather prediction analysis data over the Japanese Islands. J. Geophys. Res. Atmos. 105, 4573-4585 [DOI:10.1029/1999JD901007]
28. Davis J.L, Herring T.A, Shapiro I.I, Rogers A.E.E, Elgered G. (1985). Geodesy by radio interferometry: Effects of atmospheric modeling errors on estimates of baseline length. Radio Sci. 20, 1593-1607. [DOI:10.1029/RS020i006p01593]
29. Rüeger J. (2002). Refractive index formulae for radio waves, in: FIG XXII International Congress. Washington, pp. 1-13.
30. Vey S, Dietrich R, Rüke A, Fritsche M, Steigenberger P, Rotacher M. (2010). Validation of Precipitable Water Vapor within the NCEP/DOE Reanalysis Using Global GPS Observations from One Decade. Journal of Climate 23, doi: 10.1175/2009JCLI2787.1 [DOI:10.1175/2009JCLI2787.1]
31. Yuan Y, Zhang K, Rohm W, Choy S, Norman R, Wang C. S. (2014). Real‐time retrieval of precipitable water vapor from GPS precise point positioning. Journal of geophysical research: atmospheres, 119(16), 10044-10057. [DOI:10.1002/2014JD021486]

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author