Volume 5, Issue 3 (3-2021)                   NMCE 2021, 5(3): 78-90 | Back to browse issues page


XML Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Rahami H, Fadaee S, Mirhosseini Hezaveh S M. Evaluation of Damage Index of Eccentrically-Braced Frames according to Link Beam’s Length with Soil-Structure Interaction Effects. NMCE 2021; 5 (3) :78-90
URL: http://nmce.kntu.ac.ir/article-1-377-en.html
1- Associate Professor, School of Engineering Science, College of Engineering, University of Tehran, Tehran, Iran. , hrahami@ut.ac.ir
2- PhD candidate, Department of Civil Engineering, Arak branch, Islamic Azad University, Arak, Iran
3- Assistant Professor, Department of Civil Engineering, Arak branch, Islamic Azad University, Arak, Iran
Abstract:   (434 Views)
Due to features such as ductility and stiffness, the eccentrically-braced frames(EBF) have a good performance against seismic loads and have been considered by designers. Previous studies indicate that the soil underlying the structures affects their seismic behavior. In the case of EBFs, the link beam plays an imporatnt role in the seismic behavior of the system and thus, investigation into the effect of the geometric characteristics of the link on general behavior of the system, would be of utmost significance. In this respect, length of the link beam has been considered as the main variable in this study, taking the effects of soil-structure interaction (SSI) into account.Dynamic time-history analyses considering different lengths for the link beam with and without inclusion of the SSI, have been conducted, aiming to obtain damage indices. The results indicate that as the length decreases, in retrun, damage index (DI)increases and vice versa. Additionally, it was found that when the ratio of length of the link to that of the bay is approximately equal to 0.5, the DI values drop significantly. Also, results showed that considering the effect of SSI, applied general changes on the value of D, and showed different effects at various lengths of the link beams.
Full-Text [PDF 837 kb]   (253 Downloads)    
 
Type of Study: Research | Subject: General
Received: 2021/01/5 | Revised: 2021/03/14 | Accepted: 2021/03/20 | ePublished ahead of print: 2021/03/25

References
1. G. Della Corte, M. D'Aniello, R. Landolfo. "Analytical and numerical study of plastic overstrength of shear links", Journal of Constructional Steel Research, Volume 82, 2013, Pages 19-32,ISSN 0143-974X, [DOI:10.1016/j.jcsr.2012.11.013]
2. Roeder CW, Popov EP. "Eccentrically braced steel frames for earthquakes", Journal of the Structural Division, 1978;104 (ST3):391-412. [DOI:10.1061/JSDEAG.0004875]
3. Hjelmstad KD, Popov EP. "Cyclic behavior and design of link beams". Journal of Structural Engineering 1983;109 (10):2387-2403. [DOI:10.1061/(ASCE)0733-9445(1983)109:10(2387)]
4. Kasai K, Popov EP. "General behavior of WF steel shear link beams". Journal of Structural Engineering 1986;112 (2):362-382. [DOI:10.1061/(ASCE)0733-9445(1986)112:2(362)]
5. Malley JO, Popov EP. "Shear links in eccentrically braced frames". Journal of Structural Engineering 1984;110 (9):2275-2295. [DOI:10.1061/(ASCE)0733-9445(1984)110:9(2275)]
6. Popov EP, Engelhardt MD. "Seismic eccentrically braced frames". Journal of Constructional Steel Research 1988;10:321-354. [DOI:10.1016/0143-974X(88)90034-X]
7. Kasai K, Popov EP. "Cyclic web buckling control for shear link beams". Journal of Structural Engineering 1986;112 (3):505-523. [DOI:10.1061/(ASCE)0733-9445(1986)112:3(505)]
8. Richards PW, Uang CM. "Testing protocol for short links in eccentrically braced frames". Journal of Structural Engineering 2006; 132(8):1183-1991. [DOI:10.1061/(ASCE)0733-9445(2006)132:8(1183)]
9. Koboevic S, Redwood R. "Design and seismic response of shear critical eccentrically braced frames". Canadian Journal of Civil Engineering 1997; 24(5):761-771. [DOI:10.1139/l97-016]
10. Okazaki T, Arce G, Ryu HC, Engelhardt MD. "Experimental study of local buckling, overstrength, and fracture of links in eccentrically braced frames". Journal of Structural Engineering 2005; 131(10):1526-1535. [DOI:10.1061/(ASCE)0733-9445(2005)131:10(1526)]
11. Rossi PP, Lombardo A. "Influence of the link overstrength factor on the seismic behavior of eccentrically braced frames". Journal of Constructional Steel Research 2007; 63:1529-1545. [DOI:10.1016/j.jcsr.2007.01.006]
12. American Institute of Steel Construction (AISC). "Seismic Provisions for Structural Steel Buildings", Publication No S341. American Institute of Steel Construction: Chicago, IL, 1997.
13. American Institute of Steel Construction (AISC). "Seismic Provisions for Structural Steel Buildings", ANSI/AISC 341-02. American Institute of Steel Construction: Chicago, IL, 2002.
14. American Institute of Steel Construction (AISC). "Seismic Provisions for Structural Steel Buildings", ANSI/AISC 341-05. American Institute of Steel Construction: Chicago, IL, 2005.
15. American Institute of Steel Construction (AISC). "Seismic Provisions for Structural Steel Buildings", ANSI/AISC 341-10. American Institute of Steel Construction: Chicago, IL, 2010.
16. Eurocode 8: Design of Structures for Earthquake Resistance - Part 1:General Rules, "Seismic Actions and Rules for Buildings". European Standard EN 1998-1. European Committee for Standardization: Brussels, Belgium, 2004.
17. Kuşy lmaz, A. and Topkaya, C. "Fundamental periods of steel eccentrically braced frames, Struct". Design Tall Spec. Build., 2015(24), pages 123- 140, doi: 10.1002/tal.1157. [DOI:10.1002/tal.1157]
18. Ezoddin A, Kheyroddin A, Gholhaki, M. "Investigation of the Effect of Link Beam Length on the RC Frame Retrofitted with the Linked Column Frame System". Civil Engineering Infrastructures Journal 2020; 53:137-159.
19. C. KeremGulec, Bruce Gibbons, Albert Chen, Andrew S. Whittaker. "Damage states and fragility functions for link beams in eccentrically braced frames". Journal of Constructional Steel Research, Volume 67, Issue 9, 2011, Pages 1299-1309, ISSN 0143-974X, https://doi.org/10.1016/j.jcsr.2011.03.014 [DOI:10.1016/j.jcsr.2011.03.014.]
20. Jonathan V, Orientilize M, Sentosa B,O,B. "Numerical study of damage index of 2d steel building with eccentrically braced frame using OpenSees". IOP Conf. Series: Materials Science and Engineering 801,2020. doi:10.1088/1757-899X/801/1/012022. [DOI:10.1088/1757-899X/801/1/012022]
21. B. Getmiri, H.R. Tajoddini. "The effects of nonlinear behavior of soil on dynamic responses of tall buildings" J CollEng, 37 (2) (2003), pp. 283-294 [in Persian)].
22. Nakhaei M., GhannadMA."The effect of soil-structure interaction on damage index of buildings",Engineering Structures, 2008,30(6): 1491-1499. [DOI:10.1016/j.engstruct.2007.04.009]
23. Yin ZH, Feng D and Yang W. "Damage Analyses of Replaceable Links in Eccentrically Braced Frame (EBF) Subject to Cyclic Loading". Applied Sciences, 2019, 9:332. Doi:10.3390/app9020332. [DOI:10.3390/app9020332]
24. Khatibinia M., Fadaee MJ., Salajegheh J., SalajeghehE.,"Seismic reliability assessment of RC structures including soil-structure interaction using wavelet weighted least squares support vector machine", Reliability Engineering and System Safety, 2013, 110: 22-33. [DOI:10.1016/j.ress.2012.09.006]
25. Sextos AG., Kappos AJ., Pitilakis KD., "Inelastic dynamic analysis of RC bridges accounting for spatial variability of ground motion, site effects and soil-structure interaction phenomenaPart 2: Parametric study", Earthquake Engineering and Structural Dynamics, 2003, 32(4): 629-652. [DOI:10.1002/eqe.242]
26. Tabatabaiefar HR., Massumi A.,"A simplified method to determine seismic responses of reinforced concrete moment resisting building frames under influence of soil-structure interaction", Soil Dynamics and Earthquake Engineering, 2010, 30(11): 1259-1267. [DOI:10.1016/j.soildyn.2010.05.008]
27. Tang Y., Zhang J."Probabilistic seismic demand analysis of a slender RC shear wall considering soil-structure interaction effects", Engineering Structures,2011., 33(1): 218-229. [DOI:10.1016/j.engstruct.2010.10.011]
28. Wong HL., Trifunac MD."A comparison of soil-structure interaction calculations with results of full-scale forced vibration tests". Soil Dynamics and Earthquake Engineering, 1988, 7(1): 22-31. [DOI:10.1016/S0267-7261(88)80012-5]
29. Ayough P., Mohamadi S., Haj SeiyedTaghiaSA."Response of steel moment and braced frames subjected to near-source pulse-like ground motions by including soilstructure interaction effects", Civil Engineering Journal, 2017, 3(1): 15-34. [DOI:10.28991/cej-2017-00000069]
30. Azarbakht A., GhaforyAshtianyM."Influence of the soil-structure interaction on the design of steel-braced building foundation". AIP Conference Proceedings, 2008, 1020(1). [DOI:10.1063/1.2963888]
31. JabiniAsli S., Saffari H., ZahediMJ."The effects of soil-structure interaction on seismic response of steel moment resisting frames". Journal of Seismology and Earthquake Engineering, 2017, 19(4): 313-325.
32. Raychowdhury P."Seismic response of low-rise steel moment-resisting frame (SMRF) buildings incorporating nonlinear soil-structure interaction (SSI)". Engineering Structures, 2011,33(3): 658-967. [DOI:10.1016/j.engstruct.2010.12.017]
33. Bitarafan M, Vahdani R. "Assessing the effect of soil-structure interaction on damage indices of reinforced concrete frames". European Journal of Environmental and Civil Engineering, 2020 (4): 11, 1693-1708. [DOI:10.1080/19648189.2018.1482789]
34. Haj Najafi L., Tehranizadeh M., "Evaluation of seismic behavior for moment frames and eccentrically braced frames due to near-field ground motions", Asian Journal of Civil Engineering (Building and Housing), 2013, 14(06): 809-830.
35. Mazzoni, S., McKenna, F., Scott, M.H. and Fenves, G.L. "OpenSees". Command Manual, 2014 http://OpenSees.berkeley.edu/wiki/index.php/Command_Manual.
36. Jaya, K.P. and Meher Prasad, A. "Embedded foundation in layered soil under dynamic excitations", Soil Dynamics and Earthquake Engineering,2002, 22(6), pp. 485-498. [DOI:10.1016/S0267-7261(02)00032-5]
37. Park, Young-Ji, and Alfredo H-S. Ang. "Mechanistic seismic damage model for reinforced concrete". Journal of structural engineering 111,1985, no. 4 pp722-739. [DOI:10.1061/(ASCE)0733-9445(1985)111:4(722)]
38. Zhang, Y., Conte, J.P., Yang, Z., Elgamal, A., Bielak, J. and Acero, G. "Two-dimensional nonlinear 497 earthquake response analysis of a bridge-foundation-ground system". Earthquake Spectra,2008 24(2), pp. 343-498 386. [DOI:10.1193/1.2923925]
39. Lysmer, J. and Kuhlemeyer, R.L. "Finite dynamic model for infinite media", Journal of the 500 Engineering Mechanics Division,1969: 95(4 EM), pp. 859-877. [DOI:10.1061/JMCEA3.0001144]
40. Kim, Tae-Hoon, Young-Jin Kim, Hyeong-Taek Kang, and Hyun Mock Shin. "Performance assessment of reinforced concrete bridge columns using a damage index". Canadian Journal of Civil Engineering 34,2007, no. 7, pp 843-855. [DOI:10.1139/l07-003]
41. Tabatabaiefar, H.R. and Massumi, A. "A simplified method to determine seismic responses of 431 reinforced concrete moment resisting building frames under influence of soil-structure interaction", Soil 432 Dynamics and Earthquake Engineering,2010, 30(11), pp. 1259-1267. [DOI:10.1016/j.soildyn.2010.05.008]
42. Bitarafan, M. and Vahdani, R. "Assessing the effect of soil structure interaction on damage indices of reinforced concrete frames", European Journal of Environmental and Civil Engineering,2020, 24(11), pp. 1-15. [DOI:10.1080/19648189.2018.1482789]
43. Mohebi, B. and Chegini, A. "A new damage index for steel MRFs based on incremental dynamic analysis", Journal of Constructional of Steel Structures,2019, 156 (2), pp. 137-154. [DOI:10.1016/j.jcsr.2019.02.005]

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author