Volume 6, Issue 3 (3-2022)                   NMCE 2022, 6(3): 78-91 | Back to browse issues page

XML Print

Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Bahrani M K, Nooralizadeh A, Sharify M, Karami N. Experimental and finite element study of one span concrete bridge bent designed by the requirements of the 1970s, under gravity and lateral load. NMCE. 2022; 6 (3) :78-91
URL: http://nmce.kntu.ac.ir/article-1-351-en.html
Assistant professor, Department of Civil Engineering, University of Qom, Qom, Iran. , mkbahrani@ut.ac.ir
Abstract:   (397 Views)
In recent years, there has been a growing seismic demand for existing bridges and the final redesign of bridges, especially after a major earthquake One method to strengthen concrete frames on bridges is to use steel sheets or profiles to use the confining force. During this study, a sample at 30% scale under gravity and lateral cycle loading was examined within the laboratory. A finite element model is additionally used to compare the behavior of laboratory samples. The laboratory sample was a model of a typical bridge in iran that was generally designed with deficient detailing requirements in agreement with the typical regulations of the 1970s. A finite element analysis set was used to evaluate various parameters in improving the behavior of the laboratory sample. The finite element model correctly predicted the weakness of the model. Subsequently, a reinforced specimen was investigated by increasing the prestressing force within the concrete beam and the thickness of the frp sheets utilized in the bridge pier by the finite element method. The results show the energy absorbed within the hysteresis curves improved the propagation of the failure. The  result also  showed that  a 100% increase in the prestressing load caused a 67% increase in resistance .
Full-Text [PDF 1217 kb]   (159 Downloads)    
Type of Study: Research | Subject: Special
Received: 2021/07/2 | Revised: 2021/08/29 | Accepted: 2021/10/21 | ePublished ahead of print: 2021/11/3

1. Wang, Y., Ibarra, L., & Pantelides, C. (2016). Seismic retrofit of a three-span RC bridge with buckling-restrained braces. Journal of Bridge Engineering, 21(11), 04016073. [DOI:10.1061/(ASCE)BE.1943-5592.0000937]
2. Hsu, Y., and Fu, C. (2004). "Seismic effect on highway bridges in Chi Chi Earthquake." J. Perform. Constr. Facil., 10.1061/(ASCE)0887 -3828(2004)18:1(47), 47-53. [DOI:10.1061/(ASCE)0887-3828(2004)18:1(47)]
3. Ab e, M., and Shimamura, M. (2012). "Performance of railway bridges during the 2011 Tōhoku Earthquake." J. Perform. Constr. Facil., 10.1061/(ASCE)CF.1943-5509.0000379, 13-23.
4. Han, Q., Qin, L., and Wang, P. (2013). "Seismic failure of typical curved RC bridges in Wenchuan Earthquake." Proc., 6th China-Japan-US Trilateral Symposium on Lifeline Earthquake Engineering, ASCE, Reston, VA, 425-432. [DOI:10.1061/9780784413234.055]
5. Kwon, O., Elnashai, A. S., Gencturk, B., Kim, S., Jeong, S., and Dukes, J. (2011). "Assessment of seismic performance of structures in 2010 Chile Earthquake through field investigation and case studies." Proc., 2011 Structures Congress, ASCE, Reston, VA. [DOI:10.1061/41171(401)143]
6. Johnson, N., Ranf, R., Saiidi, M., Sanders, D., and Eberhard, M. (2008). "Seismic testing of a two-span reinforced concrete bridge." J. Bridge Eng., 10.1061/(ASCE)1084-0702(2008)13:2(173), 173-182. [DOI:10.1061/(ASCE)1084-0702(2008)13:2(173)]
7. Priestley, M. N., Seible, F., and Calvi, G. M. (1996). Seismic design and retrofit of bridges, John Wiley and Sons, New York. [DOI:10.1002/9780470172858]
8. Zong, Z., Xia, Z., Liu, H., Li, Y., and Huang, X. (2016). "Collapse failure of prestressed concrete continuous rigid-frame bridge under strong earthquake excitation: Testing and simulation." J. Bridge Eng., 10.1061 /(ASCE)BE.1943-5592.0000912, 04016047. [DOI:10.1061/(ASCE)BE.1943-5592.0000912]
9. Berry, M., Parrish, M., and Eberhard, M. (2004). PEER structural performance database user's manual (version 1.0), Univ. California, Berkeley, CA.
10. Chang, S., Li, Y., and Loh, C. (2004). "Experimental study of seismic behaviors of as-built and carbon reinforced plastics repaired reinforced concrete bridge columns." J. Bridge Eng., 10.1061/(ASCE)1084 -0702(2004)9:4(391), 391-402. [DOI:10.1061/(ASCE)1084-0702(2004)9:4(391)]
11. Cheng, C. T., Yang, J. C., Yeh, Y. K., and Chen, S. E. (2003). "Seismic performance of repaired hollow-bridge piers." Constr. Build. Mater., 17(5), 339-351. [DOI:10.1016/S0950-0618(02)00119-8]
12. Priestley, M. N., Seible, F., Xiao, Y., and Verma, R. (1994). "Steel jacket retrofitting of reinforced concrete bridge columns for enhanced shear strength. Part 1: Theoretical considerations and test design." Struct. J., 91(4), 394-405. [DOI:10.14359/9885]
13. Priestley, M. J. N., Seible, F., and Anderson, D. L. (1993). "Proof test of a retrofit concept for the San Francisco double-deck viaducts. Part 1: Design concept, details, and model." Struct. J., 90(5), 467-479. [DOI:10.14359/3967]
14. Sritharan, S. S., Priestley, M. J. N., and Seible, F. (1999). "Enhancing seismic performance of bridge cap beam-to-column joints using prestressing." PCI J., 44(4), 74-91 [DOI:10.15554/pcij.07011999.74.91]
15. Pantelides, C., Gergely, J., Reaveley, L., and Volnyy, V. (1999). "Retrofit of RC bridge pier with CFRP advanced composites." J. Struct. Eng., 10 .1061/(ASCE)0733-9445(1999)125:10(1094), 1094-1099. [DOI:10.1061/(ASCE)0733-9445(1999)125:10(1094)]
16. Mander, J. B., and Chen, S. (1995). "Seismic retrofit procedures for reinforced concrete bridge piers in the eastern United States." NCEER Rep. 5, National Center for Earthquake Engineering Research, Buffalo, NY.
17. Priestley, M. J. N., and Paulay, T. (1992). Seismic design of reinforced concrete and masonry buildings, John Wiley and Sons, New York.
18. AASHTO. (2007). AASHTO movable highway bridge design specifications, Washington, DC.
19. Bahrani, M. K., Vasseghi, A., Esmaeily, A., and Soltani, M. (2010). "Experimental study on seismic behavior of deficient conventional bridge bents." J. Seismol. Earthquake Eng., 12(3).
20. Barr P J, Stanton J F, Eberhard M O. Effects of temperature variations on precast, prestressed concrete bridge girders. J. Bridge Eng. 2005; 10(2): 186-194. [DOI:10.1061/(ASCE)1084-0702(2005)10:2(186)]
21. Pan Z, Fu C C, Jiang Y. Uncertainty analysis of creep and shrinkage effects in long-span continuous rigid frame of Sutong Bridge. J. Bridge Eng. 2010; 16(2): 248-258. [DOI:10.1061/(ASCE)BE.1943-5592.0000147]
22. Jung K H, Yi J W, Kim J H J. Structural safety and serviceability evaluations of prestressed concrete hybrid bridge girders with corrugated or steel truss web members. Eng. Struct. 2010; 32(12): 3866-3878. [DOI:10.1016/j.engstruct.2010.08.029]
23. Malm R, Sundquist H. Time-dependent analyses of segmentally constructed balanced cantilever bridges. Eng. Struct. 2010; 32(4): 1038-1045. [DOI:10.1016/j.engstruct.2009.12.030]
24. El-Ariss B. Behavior of beams with dowel action. Eng. Struct. 2007; 29(6): 899-903. [DOI:10.1016/j.engstruct.2006.07.008]
25. Podolny W J. The cause of cracking in post tensioned concrete box girder bridges and retrofit procedures. PCI J. 1985; 30(2): 82-139. [DOI:10.15554/pcij.03011985.82.139]
26. Wei L, Sheng X, Xiao R. Mechanism and prevention countermeasures of cracking for bottom slab in a continuous prestressed concrete box girder. Struct. Eng. 2007; 23(2): 53-57.DOI: http://doi.org/10.1177/1369433218815436 [DOI:10.1177/1369433218815436]
27. Megally S, SEIBLE F, GARG M, et al. Seismic performance of precast segmental bridge superstructures with internally bonded prestressing tendons. PCI J. 2002; 47(2): 40-56.DOI: 10.15554/pcij.03012002.40.56 [DOI:10.15554/pcij.03012002.40.56]
28. Sennah K M, Kennedy J B. State-of-the-art in design of curved box-girder bridges. J. Bridge Eng. 2001; 6(3): 159-167.DOI: [DOI:10.1061/(ASCE)1084-0702(2001)6:3(159)]
29. Ataei N, Padgett J E. Limit state capacities for global performance assessment of bridges exposed to hurricane surge and wave. Struct. Saf. 2013; 41: 73-81. [DOI:10.1016/j.strusafe.2012.10.005]
30. JTG D62-2004. Design Code for Design of Highway Reinforced Concrete and Pre-stressed Concrete Bridge Culvert. 2004.
31. Wu H Q, Gilbert R I. Modeling short-term tension stiffening in reinforced concrete prisms using a continuum-based finite element model. Eng. Struct. 2009; 31(10): 2380-2391.DOI: [DOI:10.1016/j.engstruct.2009.05.012]
32. Zhou S J. Finite beam element considering shear-lag effect in box girder. J. Eng. Mech. 2010; 136(9): 1115-1122.DOI: http://doi.org/10.1260/1369-4332.18.6.817 [DOI:10.1260/1369-4332.18.6.817]
33. Lou T, Lopes S M R, Lopes A V. A finite element model to simulate long-term behavior of prestressed concrete girders. Finite Elem. Anal. Des. 2014; 81: 48-56. [DOI:10.1016/j.finel.2013.11.007]
34. Pedziwiatr J. The influence of the bond between concrete and reinforcement on tension stiffening effect. Mag. Concrete Res. 2009; 61(6): 437-443. [DOI:10.1680/macr.2008.00097]
35. Pimentel M, Figueiras J. Assessment of an existing fully prestressed box-girder bridge. Proceedings of the Institution of Civil Engineers-Bridge Engineering. Thomas Telford Ltd 2015; 1-12.DOI: http://doi.org/10.1680/jbren.15.00014 [DOI:10.1680/jbren.15.00014]
36. Chen L, Tang G B. Influence of Longitudinal Cracks in Bottom Flange of Concrete Continuous Box Girder. Appl. Mech. Mater. 2015; 744: 773-778. [DOI:10.4028/www.scientific.net/AMM.744-746.773]
37. Al-Manaseer A A, Phillips D V. Numerical study of some post-cracking material parameters affecting nonlinear solutions in RC deep beams. Canadian J. Civ. Eng. 1987; 14(5): 655-666. DOI: [DOI:10.1139/l87-096]
38. Wang, G., Ding, Y., & Liu, X. The monitoring of temperature differences between steel truss members in long-span truss bridges compared with bridge design codes. Advances in Structural Engineering, 2019; 22(6): 1453-1466. DOI: http://doi.org/10.1177/1369433218815436 [DOI:10.1177/1369433218815436]
39. Yuan, M., Liu, Y., Yan, D., & Liu, Y. Probabilistic fatigue life prediction for concrete bridges using Bayesian inference. Advances in Structural Engineering, 2019; 22(3): 765-778. DOI: http://doi.org/10.1177/1369433218799545 [DOI:10.1177/1369433218799545]
40. X. H. Zhang, W. Zhang, Y. M. Luo, et al., Interface Shear Strength between Self-Compacting Concrete and Carbonated Concrete American Society of Civil Engineers, 2018; 32(6):04020113. DOI: https://doi.org/10.1061/(ASCE)MT.1943-5533.0003229 [DOI:1061/(ASCE)MT.1943-5533.00032]
41. E. Gottsäter, M. Johansson, M. Plos, Ivanov O. Larsson Crack widths in base restrained walls subjected to restraint loading Eng Struct, 189 (2019), pp. 272-285, 10.1016/j.engstruct.2019.03.089 [DOI:10.1016/j.engstruct.2019.03.089]
42. E. Gottsäter, O. Larsson Ivanov, M. Molnár, R. Crocetti, F. Nilenius, M. Plos Simulation of thermal load distribution in portal frame bridges Eng Struct, 143 (2017), pp. 219-231, 10.1016/j.engstruct.2017.04.012 [DOI:10.1016/j.engstruct.2017.04.012]
43. Zandi K, Ransom EH, Topac T, Chen R, Beniwal S, Blomfors M, et al. A Framework For Digital Twin of Civil Infrastructure - Challenges and Opportunities. 12th Int. Work. Struct. Heal. Monit. Stanford, California, USA, Sept. 10-12, 2019, Lancaster, PA, USA: DEStech Publications, Inc.; 2019, p. 7 pp. [DOI:10.12783/shm2019/32288]
44. I.H. Kim, H. Jeon, S.C. Baek, W.H. Hong, H.J. Jung Application of crack identification techniques for an aging concrete bridge inspection using an unmanned aerial vehicle Sensors, 18 (2018), pp. 1-14, 10.3390/s18061881 [DOI:10.3390/s18061881]
45. C.G. Berrocal, I. Fernandez, R. Rempling Crack monitoring in reinforced concrete beams by distributed optical fiber sensors Struct Infrastruct Eng (2020), pp. 1-16, 10.1080/15732479.2020.1731558 [DOI:10.1080/15732479.2020.1731558]
46. ABAQUS standard user's manual, version 6.18.

Add your comments about this article : Your username or Email:

Send email to the article author