Volume 5, Issue 4 (6-2021)                   NMCE 2021, 5(4): 1-12 | Back to browse issues page

XML Print

Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Aghabozorgi P, Khaloo A, Hassanpour S. Numerical investigation of GFRP bars contribution on performance of concrete structural elements. NMCE 2021; 5 (4) :1-12
URL: http://nmce.kntu.ac.ir/article-1-337-en.html
1- Graduate student, Department of Civil Engineering, Sharif University of Technology, Tehran, Iran.
2- Distinguished Professor, Department of Civil Engineering, Sharif University of Technology, Tehran, Iran. , Khaloo@sharif.edu
Abstract:   (1098 Views)
In this study, twenty glass fiber reinforced polymer (GFRP) reinforced concrete specimens were modelled using finite element method to predict the effect of GFRP compressive bars on the flexural strength and ductility of GFRP reinforced concrete beams. Also, the contribution of GFRP longitudinal rebars to the load-carrying capacity of reinforced concrete columns is determined. The concrete elastoplastic behaviour after the peak load was defined using the concrete damaged plasticity model in ABAQUS software. The FE results were validated using the experimental data reported in the literature. The results demonstrated a close agreement between the load-displacement curves obtained from numerical analysis and the tests. An increase in the percentage of GFRP compressive reinforcement resulted in slightly higher energy absorption and ductility in the GFRP concrete beams. According to the FE analysis, increasing GFRP compressive reinforcement has a minor influence on the flexural strength of beams. Moreover, decreasing the percentage of longitudinal reinforcement leads to a reduction in the strength and ductility of columns, and higher loss in strength was observed when greater eccentricity was applied in columns.
Full-Text [PDF 1085 kb]   (434 Downloads)    
Type of Study: Research | Subject: General
Received: 2020/12/16 | Revised: 2021/02/28 | Accepted: 2021/04/7 | ePublished ahead of print: 2021/04/18

1. A. Nanni, A. De Luca, and H. Zadeh, Reinforced Concrete with FRP Bars: Mechanics and Design. 2014. [DOI:10.1201/b16669]
2. J. Brown and A. T. Consulting, "The Study of FRP Strengthening of Concrete Structures to Increase the Serviceable Design Life in Corrosive Environments," Struct. Eng., 2012.
3. H. J. Zadeh and A. Nanni, "Design of RC columns using glass FRP reinforcement," J. Compos. Constr., vol. 17, no. 3, pp. 294-304, 2013, doi: 10.1061/(ASCE)CC.1943-5614.0000354. [DOI:10.1061/(ASCE)CC.1943-5614.0000354]
4. M. E. Sarafraz, "Flexural Strengthening of RC Columns with Low Longitudinal Steel Ratio using GFRP Bars," Int. J. Concr. Struct. Mater., 2019, doi: 10.1186/s40069-019-0354-z. [DOI:10.1186/s40069-019-0354-z]
5. N. Kabashi, C. Krasniqi, J. Sustersic, and A. Dautaj, "Flexural Behavior and Cracks in Concrete Beams Reinforced with GFRP Bars," Int. Congr. Polym. Concr., no. Icpic, pp. 617-625, 2018, doi: 10.1007/978-3-319-78175-4. [DOI:10.1007/978-3-319-78175-4]
6. C. Miàs, L. Torres, A. Turon, M. Baena, I. Vilanova, and M. Llorens, "Experimental Study of Time-dependent Behaviour of Concrete Members Reinforced with GFRP Bars," in Advances in FRP Composites in Civil Engineering, 2011, pp. 352-355. [DOI:10.1007/978-3-642-17487-2_76]
7. Z. Saleh, M. N. Sheikh, A. M. Remennikov, and A. Basu, "Response of Concrete Beams Reinforced with GFRP Bars Under Static Loads," in 25th Australasian Conference on Mechanics of Structures and Materials, pp. 765-774. [DOI:10.1007/978-981-13-7603-0_73]
8. Z. Saleh, M. N. Sheikh, A. M. Remennikov, and A. Basu, "Response of Concrete Beams Reinforced with GFRP Bars Under Impact Loads," in 25th Australasian Conference on Mechanics of Structures and Materials, 2020, vol. 37. [DOI:10.1007/978-981-13-7603-0_48]
9. ACI 440.1R-15, Guide for the Design and Construction of Structural Concrete Reinforced with Firber-Reinforced Polymer (FRP) Bars (ACI440.1R-15), vol. 22, no. 4. 2015.
10. S806-02, Design and Construction of Building Components with Fibre-Reinforced Polymers (CAN/CSA S806-02). 2009.
11. P. D. O. C. Arya, J.L.Clarke, E.A. Kay, "TR 55 : Design guidance for strengthening concrete structures using fiber composite materials," Struct. Eng. Mech. Comput., vol. 2, pp. 1243-1250, 2001.
12. ISO10406-1, Iso 10406-1 "Fibre-reinforced polymer (FRP) reinforcement of concrete - Test Methods, Part 1: FRP bars and grids." 2008.
13. fib TG 9.3, fib Bulletin 40: FRP reinforcement in RC structures, no. 1997. 2002.
14. M. Elchalakani, A. Karrech, M. Dong, M. S. Mohamed Ali, and B. Yang, "Experiments and Finite Element Analysis of GFRP Reinforced Geopolymer Concrete Rectangular Columns Subjected to Concentric and Eccentric Axial Loading," Structures, vol. 14, no. 2017, pp. 273-289, 2018, doi: 10.1016/j.istruc.2018.04.001. [DOI:10.1016/j.istruc.2018.04.001]
15. G. B. Maranan, A. C. Manalo, B. Benmokrane, W. Karunasena, and P. Mendis, "Evaluation of the flexural strength and serviceability of geopolymer concrete beams reinforced with glass-fibre-reinforced polymer (GFRP) bars," Eng. Struct., vol. 101, pp. 529-541, 2015, doi: 10.1016/j.engstruct.2015.08.003. [DOI:10.1016/j.engstruct.2015.08.003]
16. H. Tobbi, A. S. Farghaly, and B. Benmokrane, "Behavior of concentrically loaded fiber-reinforced polymer reinforced concrete columns with varying reinforcement types and ratios," ACI Struct. J., vol. 111, no. 2, pp. 375-385, 2014, doi: 10.14359/51686528. [DOI:10.14359/51686528]
17. D. H. Deitz, I. E. Harik, M. Asce, H. Gesund, and F. Asce, "Physical Properties of Glass Fiber Reinforced Polymer Rebars in Compression," J. Compos. Constr., vol. 7, no. 4, pp. 363-366, 2003, doi: [DOI:10.1061/(ASCE)1090-0268(2003)7:4(363)]
18. M. Z. Afifi, H. M. Mohamed, and B. Benmokrane, "Axial Capacity of Circular Concrete Columns Reinforced with GFRP Bars and Spirals," J. Compos. Constr., vol. 18, no. 1, p. 04013017, 2014, doi: 10.1061/(ASCE)CC.1943-5614.0000438. [DOI:10.1061/(ASCE)CC.1943-5614.0000438]
19. M. Z. Afifi, H. M. Mohamed, and B. Benmokrane, "Strength and Axial Behavior of Circular Concrete Columns Reinforced with CFRP Bars and Spirals," J. Compos. Constr., vol. 18, no. 2, p. 04013035, Apr. 2014, doi: 10.1061/(ASCE)CC.1943-5614.0000430. [DOI:10.1061/(ASCE)CC.1943-5614.0000430]
20. Z. Guri and M. Misini, "Experimental and numerical study of circular columns reinforced with steel and GFRP bars," Mag. Concr. Res., pp. 1-27, 2019, doi: 10.1680/jmacr.19.00003. [DOI:10.1680/jmacr.19.00003]
21. A. De Luca, F. Matta, and A. Nanni, "Behavior of full-scale glass fiber-reinforced polymer reinforced concrete columns under axial load," ACI Struct. J., vol. 107, no. 5, pp. 589-596, 2010, doi: 10.14359/51663912. [DOI:10.14359/51663912]
22. M. Ahmadi, M. Naghipour, and M. Nematzadeh, "Numerical and Experimental Investigations on the Behavior of Steel-reinforced Concrete Columns Subjected to Eccentric Loading," Int. J. Eng., vol. 33, no. 8, pp. 1529-1543, 2020. [DOI:10.5829/ije.2020.33.08b.11]
23. M. Alsayed, SH and Al-Salloum, YA and Almusallam, TH and Amjad, "Concrete columns reinforced by glass fiber reinforced polymer rods," Spec. Publ., vol. 188, pp. 103--112, 1999.
24. X. C. A Mirmiran, W Yuan, "Design for slenderness in concrete columns internally reinforced with fiber-reinforced polymer bars," ACI Struct. J., vol. 98, pp. 116-125, 2001. [DOI:10.14359/10153]
25. C. C. Choo, I. E. Harik, and H. Gesund, "Minimum reinforcement ratio for fiber-reinforced polymer reinforced concrete rectangular columns," ACI Struct. J., vol. 103, no. 3, pp. 460-466, 2006, doi: 10.14359/15325. [DOI:10.14359/15325]
26. U. K. Sharma, P. Bhargava, and S. K. Kaushik, "Behavior of Confined High Strength Concrete Columns under Axial Compression," J. Adv. Concr. Technol., vol. 3, no. 2, pp. 267-281, 2005, doi: 10.3151/jact.3.267. [DOI:10.3151/jact.3.267]
27. H. Karim, M. N. Sheikh, and M. N. S. Hadi, "Axial load-axial deformation behaviour of circular concrete columns reinforced with GFRP bars and helices," Constr. Build. Mater., vol. 112, pp. 1147-1157, 2016, doi: 10.1016/j.conbuildmat.2016.02.219. [DOI:10.1016/j.conbuildmat.2016.02.219]
28. G. B. Maranan, A. C. Manalo, B. Benmokrane, W. Karunasena, and P. Mendis, "Behavior of concentrically loaded geopolymer-concrete circular columns reinforced longitudinally and transversely with GFRP bars," Eng. Struct., vol. 117, pp. 422-436, 2016, doi: 10.1016/j.engstruct.2016.03.036. [DOI:10.1016/j.engstruct.2016.03.036]
29. N. Azlina, A. Hamid, A. Ibrahim, R. Thamrin, and H. A. Hamid, "Effect of Longitudinal Reinforcement Ratio on Shear Capacity of Concrete Beams with GFRP Bars," in International Congress on Polymers in Concrete, 2018, pp. 617-625, doi: 10.1007/978-981-10-0155-0. [DOI:10.1007/978-981-10-0155-0]
30. M. Elchalakani, G. Ma, F. Aslani, and W. Duan, "Design of GFRP-reinforced rectangular concrete columns under eccentric axial loading," Mag. Concr. Res., vol. 69, no. 17, pp. 865-877, 2017, doi: 10.1680/jmacr.16.00437. [DOI:10.1680/jmacr.16.00437]
31. M. Elchalakani, A. Karrech, M. Dong, M. S. Mohamed Ali, G. (Kevin) Li, and B. Yang, "Testing and modelling of geopolymer concrete members with fibreglass reinforcement," Proc. Inst. Civ. Eng. - Struct. Build., pp. 1-16, 2019, doi: 10.1680/jstbu.18.00173. [DOI:10.1680/jstbu.18.00173]
32. T. Yu, J. G. Teng, Y. L. Wong, and S. L. Dong, "Finite element modeling of confined concrete-II: Plastic-damage model," Eng. Struct., vol. 32, no. 3, pp. 680-691, 2010, doi: 10.1016/j.engstruct.2009.11.013. [DOI:10.1016/j.engstruct.2009.11.013]
33. J. G. Teng, Q. G. Xiao, T. Yu, and L. Lam, "Three-dimensional finite element analysis of reinforced concrete columns with FRP and/or steel confinement," Eng. Struct., vol. 97, pp. 15-28, 2015, doi: 10.1016/j.engstruct.2015.03.030. [DOI:10.1016/j.engstruct.2015.03.030]
34. H. Mostafaei, M. Ghamami, and P. Aghabozorgi, "Modal identification of concrete arch dam by fully automated operational modal identification," Structures, vol. 32, no. August 2020, pp. 228-236, 2021, doi: 10.1016/j.istruc.2021.03.028. [DOI:10.1016/j.istruc.2021.03.028]
35. A. M. Amiri, A. Olfati, S. Najjar, P. Beiranvand, and M. H. N. Fard, "Study on Flexural of Reinforced Geopolymer Concrete Beam," Adv. Sci. Technol. Res. J., vol. 10, no. 30, pp. 89-95, 2016, doi: 10.12913/22998624/62630. [DOI:10.12913/22998624/62630]
36. A. M. A. Ibrahim, M. F. M. Fahmy, and Z. Wu, "3D finite element modeling of bond-controlled behavior of steel and basalt FRP-reinforced concrete square bridge columns under lateral loading," Compos. Struct., vol. 143, pp. 33-52, 2016, doi: 10.1016/j.compstruct.2016.01.014. [DOI:10.1016/j.compstruct.2016.01.014]
37. M. Aliasghar-Mamaghani and A. Khaloo, "Seismic behavior of concrete moment frame reinforced with GFRP bars," Compos. Part B Eng., vol. 163, no. September 2018, pp. 324-338, 2019, doi: 10.1016/j.compositesb.2018.10.082. [DOI:10.1016/j.compositesb.2018.10.082]
38. H. Sadraie, A. Khaloo, and H. Soltani, "Dynamic performance of concrete slabs reinforced with steel and GFRP bars under impact loading," Eng. Struct., vol. 191, no. December 2018, pp. 62-81, 2019, doi: 10.1016/j.engstruct.2019.04.038. [DOI:10.1016/j.engstruct.2019.04.038]
39. M. Elchalakani and G. Ma, "Tests of glass fibre reinforced polymer rectangular concrete columns subjected to concentric and eccentric axial loading," Eng. Struct., vol. 151, pp. 93-104, 2017, doi: 10.1016/j.engstruct.2017.08.023. [DOI:10.1016/j.engstruct.2017.08.023]
40. M. N. S. Hadi, F. Asce, and J. Youssef, "Experimental Investigation of GFRP-Reinforced and GFRP-Encased Square Concrete Specimens under Axial and Eccentric Load , and Four-Point Bending Test," J. Compos. Constr., vol. 20, no. 5, pp. 1-16, 2016, doi: 10.1061/(ASCE)CC.1943-5614.0000675. [DOI:10.1061/(ASCE)CC.1943-5614.0000675]
41. M. N. S. Hadi, F. Asce, H. Karim, and M. N. Sheikh, "Experimental Investigations on Circular Concrete Columns Reinforced with GFRP Bars and Helices under Different Loading Conditions," J. Compos. Constr., vol. 20, no. 4, pp. 1-12, 2016, doi: 10.1061/(ASCE)CC.1943-5614.0000670. [DOI:10.1061/(ASCE)CC.1943-5614.0000670]
42. Pultrall. V-Rod Specification:, composite reinforcing rods technical data sheet. Canada: Thetford Mines, vol. 2. 2012.
43. C. Z. Liu W, Xu M, "Parameters calibration and verification of concrete damage plasticity model of Abaqus.," J. Compos. Constr., vol. 19, no. 1, Feb. 2014, doi: 10.1061/(ASCE)CC.1943-5614.0000482. [DOI:10.1061/(ASCE)CC.1943-5614.0000482]
44. H. Mostafaei and F. Behnamfar, "Effect of the vertical earthquake component on nonlinear behavior of an arch dam having a foundation with discontinuities," Int. J. Numer. methods Civ. Eng., vol. 4, no. 2, pp. 69-78, 2019. [DOI:10.52547/nmce.4.2.69]
45. H. Mostafaei, F. Behnamfar, and M. Alembagheri, "Nonlinear analysis of stability of rock wedges in the abutments of an arch dam due to seismic loading," Struct. Monit. Maint., vol. 7, no. 4, pp. 295-317, 2020.
46. ACI 363, State-of-the-Art Report on High-Strength Concrete (ACI 363R-92)., vol. 92. 1992.
47. M. Elchalakani, A. Karrech, M. F. Hassanein, and B. Yang, "Plastic and yield slenderness limits for circular concrete filled tubes subjected to static pure bending," Thin-Walled Struct., vol. 109, pp. 50-64, 2016, doi: 10.1016/j.tws.2016.09.012. [DOI:10.1016/j.tws.2016.09.012]
48. A. Karrech, T. Poulet, and K. Regenauer-Lieb, "A limit analysis approach to derive a thermodynamic damage potential for non-linear geomaterials," Philos. Mag., vol. 92, no. 28-30, pp. 3439-3450, 2012, doi: 10.1080/14786435.2012.687469. [DOI:10.1080/14786435.2012.687469]
49. A. I. Karabinis and T. C. Rousakis, "Concrete confined by FRP material: A plasticity approach," Eng. Struct., vol. 24, no. 7, pp. 923-932, 2002, doi: 10.1016/S0141-0296(02)00011-1. [DOI:10.1016/S0141-0296(02)00011-1]
50. A. Karrech, F. Abbassi, H. Basarir, and M. Attar, "Self-consistent fractal damage of natural geo-materials in finite strain," Mech. Mater., vol. 104, pp. 107-120, 2017, doi: 10.1016/j.mechmat.2016.08.017. [DOI:10.1016/j.mechmat.2016.08.017]
51. W. Ren, L. H. Sneed, Y. Yang, and R. He, "Numerical Simulation of Prestressed Precast Concrete Bridge Deck Panels Using Damage Plasticity Model," Int. J. Concr. Struct. Mater., vol. 9, no. 1, pp. 45-54, 2015, doi: 10.1007/s40069-014-0091-2. [DOI:10.1007/s40069-014-0091-2]
52. J. B. Mander, M. J. N. Priestley, and R. Park, "Theoretical Stress‐Strain Model for Confined Concrete," J. Struct. Eng., vol. 114, no. 8, pp. 1804-1826, Sep. 1988, doi: 10.1061/(ASCE)0733-9445(1988)114:8(1804). [DOI:10.1061/(ASCE)0733-9445(1988)114:8(1804)]
53. A. J. Kappos and D. Konstantinidis, "Statistical analysis of confined high strength concrete," Mater. Struct., vol. 32, no. 10, pp. 734-748, 2018, doi: 10.1007/bf02905070. [DOI:10.1007/BF02905070]
54. AS3600, AS 3600-2009: Concrete Structures, Australian Standard. Sydney, Australia: Australian Standard, 2009, p. 208.
55. J. Stoner, "Finite Element Modelling of GFRP Reinforced Concrete Beams," University of Waterloo, 2015.
56. D. Kent and R. P. Division, "Flexural members with confined concrete," J. Struct. Div., 1971. [DOI:10.1061/JSDEAG.0002957]

Add your comments about this article : Your username or Email:

Send email to the article author