Volume 5, Issue 2 (Special Issue “Recent Achievements in Endurance Time Method” 2020)                   NMCE 2020, 5(2): 33-44 | Back to browse issues page

XML Print

Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Miri S M, Tajmir Riahi H, Mahmoudy S A. The application of endurance time method for optimum seismic design of steel moment-resisting frames using the uniform deformation theory. NMCE 2020; 5 (2) :33-44
URL: http://nmce.kntu.ac.ir/article-1-303-en.html
1- Research Assistant, Department of Civil Engineering, University of Isfahan, Isfahan, Iran.
2- Associate Professor, Department of Civil Engineering, University of Isfahan, Isfahan, Iran. , tajmir@eng.ui.ac.ir
Abstract:   (1097 Views)
The optimum seismic design of structures is one of the biggest issues for engineers to build resistant and economic structures. In this research, the application of the endurance time method in optimum performance design of steel moment-resisting frames using the uniform deformation method is evaluated. First, three steel moment-resisting frames with 3, 7 and 12 stories are considered. After that, the structures are optimized by endurance time method analysis and the uniform deformation theory, under a series of acceleration functions. Also, results are compared with the results of time history analysis based on earthquakes. The results revealed that endurance time method and time history analysis of earthquakes at low and moderate seismic hazard levels are well matched, while this adjustment does not exist for high seismic hazard level. In addition, the optimum structure at one hazard level does not lead to optimum structure in other hazard levels. To have the best performance at different hazard levels, the frames should be optimized at the moderate seismic hazard level. In order to optimize the structure at all seismic hazard levels, the GAP dampers can be used. These dampers should be effective after a specified drift at the lower seismic hazard level. In addition, the best values for convergence power of the uniform deformation method are between 0.05 to 0.15 for this purpose. By using such dampers, it is possible to have uniform drift distribution at different seismic hazard levels.
Full-Text [PDF 848 kb]   (438 Downloads)    
Type of Study: Applicable | Subject: General
Received: 2020/09/16 | Revised: 2020/10/15 | Accepted: 2020/11/16

1. [1] A. Ghobarah, "Performance-based design in earthquake engineering: state of development," Eng. Struct., vol. 23, no. 8, pp. 878-884, Aug. 2001. [DOI:10.1016/S0141-0296(01)00036-0]
2. [2] M. J. N. Priestley, "Myths and fallacies in earthquake engineering," Bull. New Zeal. Soc. Earthq. Eng., vol. 26, no. 3, pp. 329-341, Sep. 1993. [DOI:10.5459/bnzsee.26.3.329-341]
3. [3] S. H. Chao, S. C. Goel, and S. S. Lee, "A seismic design lateral force distribution based on inelastic state of structures," Earthq. Spectra, vol. 23, no. 3, pp. 547-569, Aug. 2007. [DOI:10.1193/1.2753549]
4. [4] Y. Deguchi, T. Kawashima, M. Yamanari, and K. Ogawa, "Seismic design load distribution in steel frame," in 14th World Conference on Earthquake Engineering, 2008.
5. [5] Park, Kyungha. Lateral load patterns for the conceptual seismic design of moment-resisting frame structures. Diss. 2007.
6. [6] Connor, Jerome J., and Boutros SA Klink. Introduction to motion based design. Computational Mechanics, 1996.
7. [7] S. Pezeshk, C. V. Camp, and D. Chen, "Design of Nonlinear Framed Structures Using Genetic Optimization," J. Struct. Eng., vol. 126, no. 3, pp. 382-388, Mar. 2000. [DOI:10.1061/(ASCE)0733-9445(2000)126:3(382)]
8. [8] A. K. Shukla and T. K. Datta, "Optimal Use of Viscoelastic Dampers in Building Frames for Seismic Force," J. Struct. Eng., vol. 125, no. 4, pp. 401-409, Apr. 1999. [DOI:10.1061/(ASCE)0733-9445(1999)125:4(401)]
9. [9] Karami Mohammadi, R. "Effects of shear strength distribution on the reduction of seismic damage of structures." Tehran, Iran: Sharif University of Technology (2001).
10. [10] H. Moghadam, Earthquake engineering: Principles and applications. Jahad publisher of sharif university of technology, Tehran, Iran, 2008.
11. [11] S. W. Choi, K. Park, B. K. Oh, Y. Kim, and H. S. Park, "Optimal seismic design method to induce the beam-hinging mechanism in reinforced concrete frames," in NCEE 2014 - 10th U.S. National Conference on Earthquake Engineering: Frontiers of Earthquake Engineering, 2014.
12. [12] H. Moghaddam and I. Hajirasouliha, "Toward more rational criteria for determination of design earthquake forces," Int. J. Solids Struct., vol. 43, no. 9, pp. 2631-2645, May 2006. [DOI:10.1016/j.ijsolstr.2005.07.038]
13. [13] H.Moghaddam and I.Hajirasouliha, "a New Approach for Optimum Design of Structures Under Dynamic Exciation," Asian J. Civ. Eng., vol. 5, p. 16, 2004.
14. [14] R. Karami Mohammadi, M. H. El Naggar, and H. Moghaddam, "Optimum strength distribution for seismic resistant shear buildings," Int. J. Solids Struct., vol. 41, no. 22-23, pp. 6597-6612, Nov. 2004. [DOI:10.1016/j.ijsolstr.2004.05.012]
15. [15] H. Moghaddam and R. K. Mohammadi, "More Efficient Seismic Loading for Multidegrees of Freedom Structures," J. Struct. Eng., vol. 132, no. 10, pp. 1673-1677, Oct. 2006. [DOI:10.1061/(ASCE)0733-9445(2006)132:10(1673)]
16. [16] ASCE, "ASCE/SEI, 41-17 Seismic evaluation and retrofit of existing buildings," 2017. [DOI:10.1061/9780784414859]
17. [17] Liao, W. C., and S. C. Goel. "Performance-based seismic design of RC SMF using target drift and yield mechanism as performance criteria." Advances in Structural Engineering 17.4 (2014): 529-542. [DOI:10.1260/1369-4332.17.4.529]
18. [18] I. Hajirasouliha, P. Asadi, and K. Pilakoutas, "An efficient performance-based seismic design method for reinforced concrete frames," Earthq. Eng. Struct. Dyn., vol. 41, no. 4, pp. 663-679, Apr. 2012. [DOI:10.1002/eqe.1150]
19. [19] S. K. Ghosh and J. Henry, "2009 IBC Handbook Structural Provisions, International Code Council, 2009: 2009 IBC Handbook Structural Provisions," 2009.
20. [20] R. Karami Mohammadi and A. Ghasemof, "Performance-based design optimization using uniform deformation theory: A comparison study," in Latin American Journal of Solids and Structures, 2015, vol. 12, no. 1, pp. 18-36. [DOI:10.1590/1679-78251207]
21. [21] R. K. Mohammadi and A. H. Sharghi, "On the optimum performance-based design of eccentrically braced frames," Steel Compos. Struct., vol. 16, no. 4, pp. 357-374, Apr. 2014. [DOI:10.12989/scs.2014.16.4.357]
22. [22] Moghaddam, Hassan, and Seyed Mojtaba Hosseini Gelekolai. "Optimum Seismic Design of Short to Mid-Rise Steel Moment Resisting Frames Based on Uniform Deformation Theory." Journal of Seismology and Earthquake Engineering 19.1 (2020): 13-24.
23. [23] B. Ganjavi and I. Hajirasouliha, "Optimum performance-based design of concentrically braced steel frames subjected to near-fault ground motion excitations," Iran Univ. Sci. Technol., vol. 9, no. 2, pp. 177-193, 2019.
24. [24] N. Nabid, I. Hajirasouliha, and M. Petkovski, "Adaptive low computational cost optimisation method for performance-based seismic design of friction dampers," Eng. Struct., vol. 198, p. 109549, Nov. 2019. [DOI:10.1016/j.engstruct.2019.109549]
25. [25] R. K. Mohammadi, M. R. Garoosi, and I. Hajirasouliha, "Practical method for optimal rehabilitation of steel frame buildings using buckling restrained brace dampers," Soil Dyn. Earthq. Eng., vol. 123, pp. 242-251, Aug. 2019. [DOI:10.1016/j.soildyn.2019.04.025]
26. [26] P. Asadi and I. Hajirasouliha, "A practical methodology for optimum seismic design of RC frames for minimum damage and life-cycle cost," Eng. Struct., vol. 202, p. 109896, Jan. 2020. [DOI:10.1016/j.engstruct.2019.109896]
27. [27] M. Gao and S. Li, "Refined Seismic Design Method for RC Frame Structures to Increase the Collapse Resistant Capacity," Appl. Sci., vol. 10, no. 22, p. 8230, Nov. 2020. [DOI:10.3390/app10228230]
28. [28] H. T. Riahi and H. E. Estekanchi, "Comparison of different methods for selection and scaling of ground motion time histories," in 5th International conference on seismology and earthquake engineering, 2007, pp. 13-16.
29. [29] H. Tajmir Riahi, H. Amouzegar, and S. Ale Saheb Fosoul, "Comparative study of seismic structural response to real and spectrum matched ground motions," Sci. Iran., vol. 22, no. 1, pp. 92-106, 2015.
30. [30] H. E. Estekanchi, V. Valamanesh, and A. Vafai, "Application of Endurance Time method in linear seismic analysis," Eng. Struct., vol. 29, no. 10, pp. 2551-2562, Oct. 2007. [DOI:10.1016/j.engstruct.2007.01.009]
31. [31] H. T. Riahi and H. E. Estekanchi, "Seismic assessment of steel frames with the endurance time method," J. Constr. Steel Res., vol. 66, no. 6, pp. 780-792, Jun. 2010. [DOI:10.1016/j.jcsr.2009.12.001]
32. [32] H. E. Estekanchi, H. T. Riahi, and A. Vafai, "Application of endurance time method in seismic assessment of steel frames," Eng. Struct., vol. 33, no. 9, pp. 2535-2546, 2011. [DOI:10.1016/j.engstruct.2011.04.025]
33. [33] H. E. Estekanchi, H. T. Riahi, and A. Vafai, "Endurance time method : exercise test for seismic assessment of structures," in The 14th World Conference on Earthquake Engineering, 2008.
34. [34] H. E. Estekanchi, A. Vafai, and H. T. Riahi, "Endurance Time Method: From Ideation To Application," in Improving Earthquake Mitigation through Innovations and Applications in Seismic Science, Engineering, Communication, and Response. Proceedings of a U.S.-Iran Seismic Workshop June 29-July 1, 2009 Irvine, California, 2008, no. November. [DOI:10.1016/j.engstruct.2007.01.009]
35. [35] H. Tajmir Riahi, H. Amouzegar, and M. Falsafioun, "Seismic collapse assessment of reinforced concrete moment frames using endurance time analysis," Struct. Des. Tall Spec. Build., vol. 24, no. 4, pp. 300-315, Mar. 2015. [DOI:10.1002/tal.1168]
36. [36] H. T. Riahi, H. E. Estekanchi, and S. S. Boroujeni, "Application of Endurance Time Method in Nonlinear Seismic Analysis of Steel Frames," Procedia Eng., vol. 14, pp. 3237-3244, 2011. [DOI:10.1016/j.proeng.2011.07.409]
37. [37] H. E. Estekanchi, H. T. Riahi, and A. Vafai, "Endurance Time Method : a Dynamic Pushover Procedure for," in First European Conference on Earthquake Engineering and Seismology, 2006, no. September, pp. 3-8.
38. [38] M. Mashayekhi, H. E. Estekanchi, and H. Vafai, "Simulation of Endurance Time Excitations via Wavelet Transform," Iran. J. Sci. Technol. Trans. Civ. Eng., vol. 43, no. 3, pp. 429-443, Sep. 2019. [DOI:10.1007/s40996-018-0208-y]
39. [39] M. Mashayekhi, M. Harati, and H. E. Estekanchi, "Development of an alternative PSO‐based algorithm for simulation of endurance time excitation functions," Eng. Reports, vol. 1, no. 3, Oct. 2019. [DOI:10.1002/eng2.12048]
40. [40] M. R. Mashayekhi, S. A. Mirfarhadi, H. E. Estekanchi, and H. Vafai, "Predicting probabilistic distribution functions of response parameters using the endurance time method," Struct. Des. Tall Spec. Build., vol. 28, no. 1, p. e1553, Jan. 2019. [DOI:10.1002/tal.1553]
41. [41] H. E. Estekanchi, M. Harati, and M. R. Mashayekhi, "An investigation on the interaction of moment-resisting frames and shear walls in RC dual systems using endurance time method," Struct. Des. Tall Spec. Build., vol. 27, no. 12, p. e1489, Aug. 2018. [DOI:10.1002/tal.1489]
42. [42] Mirzaei, A., H. Estekanchi and A. A. Vafaei. "Application of endurance time method in performance-based design of steel moment frames." Scientia Iranica 17 (2010): 482-492.
43. [43] M. A. Hariri-Ardebili, Y. Zarringhalam, H. E. Estekanchi, and M. Yahyai, "Nonlinear seismic assessment of steel moment frames using time-history, incremental dynamic, and endurance time analysis methods," Sci. Iran., vol. 20, no. 3, pp. 431-444, 2013. [DOI:10.1016/j.scient.2013.04.003]
44. [44] E. Rahimi and H. E. Estekanchi, "Collapse assessment of steel moment frames using endurance time method," Earthq. Eng. Eng. Vib., vol. 14, no. 2, pp. 347-360, Jun. 2015. [DOI:10.1007/s11803-015-0027-0]
45. [45] H. E. Estekanchi and M. C. Basim, "Optimal damper placement in steel frames by the Endurance Time method," Struct. Des. Tall Spec. Build., vol. 20, no. 5, pp. 612-630, Aug. 2011. [DOI:10.1002/tal.689]
46. [46] M. A. Foyouzat and H. Estekanchi, "Evaluation of the EDR Performance in Seismic Control of Steel Structures Using Endurance Time Method," Sci. Iran., vol. 23, no. 3, pp. 827-841, Jul. 2016. 10.24200/SCI.2016.2162 [DOI:10.24200/sci.2016.2162]
47. [47] H. Amouzegar, H. T. Riahi, and M. Daei, "Application of Endurance Time Method in Structural Optimization of the Dampers for Seismic Design," in 15th World Conference on Earthquake Engineering, Lisbon Portugal, 2012, pp. 9-24.
48. [48] S. A. Mirfarhadi and H. E. Estekanchi, "Value based seismic design of structures using performance assessment by the endurance time method," Struct. Infrastruct. Eng., vol. 16, no. 10, pp. 1397-1415, Oct. 2020. [DOI:10.1080/15732479.2020.1712436]
49. [49] H. E. Estekanchi, M. Mashayekhi, H. Vafai, G. Ahmadi, S. A. Mirfarhadi, and M. Harati, "A state-of-knowledge review on the endurance time method," Structures, vol. 27, pp. 2288-2299, Oct. 2020. [DOI:10.1016/j.istruc.2020.07.062]
50. [50] M. F, F. GL, and S. MH., "OpenSees: open system for earthquake engineering simulation," Pacific Earthquake Engineering Research Center, University of California, Berkeley. University of California, Berkeley, 2007.
51. [51] Ibarra, Luis F., and Helmut Krawinkler. Global collapse of frame structures under seismic excitations. Berkeley, CA: Pacific Earthquake Engineering Research Center, 2005.
52. [52] P. Somerville, N. Smith, S. Punyamurthula, and J. Sun, "Development of Ground Motion Time History for Phase 2 of the FEMA/SAC Steel Project. Report No. SAC/BD-97/04," 1997.
53. [53] Hajirasouliha, I. and Moghaddam, H. "New Lateral Force Distribution for Seismic Design of Structures,"Journal of Structural Engineering, 135 (8), pp 2631-2645, 2009. [DOI:10.1061/(ASCE)0733-9445(2009)135:8(906)]

Add your comments about this article : Your username or Email:

Send email to the article author