Volume 1, Issue 2 (11-2016)                   NMCE 2016, 1(2): 41-47 | Back to browse issues page


XML Persian Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Ghoreishian Amiri S. Application of the multi-laminate sub-loading surface model in the simulation of a pipe-jacking operation. NMCE 2016; 1 (2) :41-47
URL: http://nmce.kntu.ac.ir/article-1-26-en.html
Civil Engineering Department of University of Qom, Qom, Iran
Abstract:   (2228 Views)
In this paper a constitutive model formulated in the framework of multi-laminate models is applied to analyze pipe-jacking processes. The multi-laminate -based models consider various integration planes to formulate the stress-strain relationship. This basic feature of the framework has the advantage that yield criteria, flow and hardening rules are formulated on planes rather than in three-dimensional stress space. In the proposed model, constitutive equations of the integration planes are derived based on the sub-loading surface plasticity framework. It is demonstrated that the development of large deformation and cracks formation which are the main difficulties in the simulation of pipe-jacking processes can be captured with this model. The ability of the model in the handling of these difficulties is verified with the simulation a laboratory pipe-jacking test. The simulation results show reasonable agreement with the test data.
Full-Text [PDF 579 kb]   (969 Downloads)    
Type of Study: Research | Subject: Special
Received: 2014/03/8 | Revised: 2014/08/14 | Accepted: 2014/11/8 | ePublished ahead of print: 2014/11/28

References
1. [1] Abufarsakh, M., Voyiadjis, G., "Computational model for the simulation of the shield tunneling process in cohesive soils", Int. J. Numer. Anal. Meth. Geomech., vol. 23, 1999, p. 23-44. https://doi.org/10.1002/(SICI)1096-9853(199901)23:1<23::AID-NAG956>3.0.CO;2-Z [DOI:10.1002/(SICI)1096-9853(199901)23:13.0.CO;2-Z]
2. [2] Barala, M., Camusso, M., Aiassa, S., "Analysis of jacking forces during micro-tunneling in limestone", Tun. Undgr. Spc. Tech., vol. 21, 2006, p. 668-683. [DOI:10.1016/j.tust.2006.01.002]
3. [3] Belytschko, T., Fish, J., Englemann, B. E., "A finite element with embedded localization zones", Com. Meth. Appl. Mech. Eng., vol. 70, 1988, p. 59-80. [DOI:10.1016/0045-7825(88)90180-6]
4. [4] De Borst, R., "Simulation of strain localization: a re-appraisal of the Cosserat continuum", Eng. Comp., vol. 8, 1991, p. 317-32. [DOI:10.1108/eb023842]
5. [5] Brinkgreve, R., Vermeer, P., "A new approach to softening plasticity", In Pande & Pietruszczak (Ed.), Proc. 5th Int. Symp. Numerical Models in Geomechanics - NUMOG V, 1995, Davos, p. 193-202.
6. [6] Hashiguchi, K., "Fundamentals in constitutive equation: continuity and smoothness conditions and loading criterion", Soils Found., vol. 40 no. 3, 2000, p.155- 161. [DOI:10.3208/sandf.40.4_155]
7. [7] Hashiguchi, K., Saitoh, K., Okayasu, T., Tsutsumi, S., "Evaluation of typical conventional and unconventional plasticity models for prediction of softening behaviour of soils", Geotechnique, vol. 52 no. 8, 2002, p. 561-578. [DOI:10.1680/geot.52.8.561.38829]
8. [8] Hicks, M., "An adaptive mesh study of localisation in a saturated soil", In Yuan (Ed.), Proc. 9th Int. Conf. Computer Methods and Advances in Geomechanics, 1997 , Wuhan, p. 1853-1858.
9. [9] ISTT, Trenchless Tecchnology Guidelines, 1998.
10. [10] Lee, K. M., Rowe, R. K., "Finite element modeling of the three-dimensional ground deformation due to tunneling in soft cohesive soils: part I - method of analysis", Comput. Geotech., vol. 10, 1990a, p. 87- 109. [DOI:10.1016/0266-352X(90)90001-C]
11. [11] Lee, K. M., Rowe, R. K., "Finite element modeling of the three-dimensional ground deformation due to tunneling in soft cohesive soils: part II - results", Comput. Geotech., vol. 10, 1990b, p. 111-138. [DOI:10.1016/0266-352X(90)90002-D]
12. [12] Lee, K. M., Rowe, R. K., Lo, K. Y., "Subsidence owing to tunneling. I. estimating the gap parameter", Can. Geotech. J.,vol. 29, 1992, p. 929- 940. [DOI:10.1139/t92-104]
13. [13] Leroy, Y., Ortiz, M., "Finite element analysis of strain localization in frictional materials", Int. J. Num. Analyt. Meth. Geomech., vol. 13, 1989, p. 53-74. [DOI:10.1002/nag.1610130106]
14. [14] Marcher, T., Vermeer, P., "Macromodelling of softening in non-cohesive soils", Proc. Int. Symp. Continuous and Discontinuous Modelling of Cohesive Frictional Materials - CDM 2000: Springer, 2000, p. 89-108. [DOI:10.1007/3-540-44424-6_7]
15. [15] Ng, M. C., Lo, K. Y., Rowe, R. K. (1986). Analysis of field performance - the Thunder Bay Tunnel. Can. Geotech. J., 23, 30-50. [DOI:10.1139/t86-005]
16. [16] Pande, G., Sharma, K., "Multi-laminate of clays- a numerical evaluation of the influence rotation of principal stress axis", Int. J. Numer. Anal. Methods Geomech., vol. 7, 1983, p. 397- 418. [DOI:10.1002/nag.1610070404]
17. [17] Rogers, C. D., "Comparison of ground disturbance for trenching and pipebursting operations, Part I", NO DIG Eng., vol. 2 no. 4, 1995, p. 8-13.
18. [18] Rogers, C. D., "Comparison of ground disturbance for trenching and pipebursting operations, Part II", NO DIG Eng., vol. 3 no. 1, 1996, p. 15-20.
19. [19] Rogers, C., Chapman, D., Wan, F., Ng, P., "Laboratory testing of pipe splitting operations", Tun. Undgr. Spc. Tech., vol. 17, 2002, p. 99-113. [DOI:10.1016/S0886-7798(01)00061-X]
20. [20] Rowe, R. K., Lee, K. M., "Subsidence owing to tunneling. II. Evaluation of a prediction technique", Can. Geotech. J., vol. 29, 1992, p. 941- 954. [DOI:10.1139/t92-105]
21. [21] Saber, A., Steling, R., Nakhawa, S. A., "Simulation for ground movement due to pipe bursting", J. Infrastructure Sys., vol. 9 no. 4, 2003, p. 140-144. [DOI:10.1061/(ASCE)1076-0342(2003)9:4(140)]
22. [22] Sadrnejad, S. A., "Fabric behavior of sands in post-liquefaction", American Journal of Applied sciences, vol. 2 no. 12, 2005, p. 1562-1573. [DOI:10.3844/ajassp.2005.1562.1573]
23. [23] Sadrnejad, S. A., Ghoreishian Amiri, S. A., "A simple unconventional plasticity model within the multi-laminate framework", Int. J. Civil Eng.,vol. 8 no. 2, 2010, p. 143-158.
24. [24] Schuller, H., Schweiger, H. F., "Application of a multi-laminate model to simulation of shear band formation in NATM-tunneling" Comput. Geotech., vol. 29, 2002, p. 501-524. [DOI:10.1016/S0266-352X(02)00013-7]
25. [25] Schweiger, H., Schuller, H., "New developments and practical applications of the multi-laminate model for soils", Developments in theoretical geomechanics - The John Booker memorial symposium, 2000, Balkema, Sydney, Australia, p. 329-350.
26. [26] Schweiger, H., Wiltafsky, C., Scharinger, F., Galavi, V., "A multi-laminate framework for modelling induced and inherent anisotropy of soils", Geotechnique, vol. 59 no. 2, 2009, p. 87-101. [DOI:10.1680/geot.2008.3770]
27. [27] Zienkiewicz, O., Zhu, J., "A simple error estimator and adaptive procedure for practical engineering analysis", Int. J. Num. Meth. Eng., vol. 24, 1987, p. 337-57. [DOI:10.1002/nme.1620240206]

Add your comments about this article : Your username or Email:
CAPTCHA