Volume 2, Issue 1 (9-2017)                   NMCE 2017, 2(1): 1-14 | Back to browse issues page

XML Print

Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Soltani M. Vibration characteristics of axially loaded tapered Timoshenko beams made of functionally graded materials by the power series method . NMCE 2017; 2 (1) :1-14
URL: http://nmce.kntu.ac.ir/article-1-103-en.html
Assistant Professor, Department of civil engineering, University of Kashan, Kashan, Iran , msoltani@kashanu.ac.ir
Abstract:   (2015 Views)
In the present article, a semi-analytical technique to investigate free bending vibration behavior of axially functionally graded non-prismatic Timoshenko beam subjected to a point force at both ends is developed based on the power series expansions. The beam is assumed to be made of linear elastic and isotropic material with constant Poisson ratio. Material properties including the elastic modulus and mass density vary continuously through the beam axis according to the volume fraction of the constituent materials based on exponential and power-law formulations. Based on Timoshenko beam assumption and using small displacements theory, the free vibration behavior is governed by a pair of second order differential equations coupled in terms of the transverse deflection and the angle of rotation due to bending. According to the power series method, the exact fundamental solutions are found by expressing the variable coefficients presented in motion equations including cross-sectional area, moment of inertia, material properties and the displacement components in a polynomial form. The free vibration frequencies are finally determined by solving the eigenvalue problem of the obtained algebraic system. Four comprehensive examples of axially non-homogeneous Timoshenko beams with variable cross-sections are presented to clarify and demonstrate the performance and convergence of the proposed procedure. Moreover, the effects of various parameters like cross-sectional profile and material variations, taper ratios, end conditions and concentrated axial load are evaluated on free vibrational behavior of Timoshenko beam.  The obtained outcomes are compared to the results of finite element analysis in terms of ABAQUS software and those of other available numerical and analytical solutions. The competency and efficiency of the method is then remarked.
Full-Text [PDF 730 kb]   (1290 Downloads)    
Type of Study: Research | Subject: Special
Received: 2017/03/19 | Revised: 2017/06/5 | Accepted: 2017/07/7 | ePublished ahead of print: 2017/07/17

1. [1] Alshorbagy A.E., Eltaher M.A., Mahmoud F.F. (2011). "Free vibration characteristics of a functionally graded beam by finite element method." Applied Mathematical Modelling, 35(1), 412-425. [DOI:10.1016/j.apm.2010.07.006]
2. [2] Asgarian B., Soltani M., Mohri F. (2013). "Lateral-torsional buckling of tapered thin-walled beams with arbitrary cross-sections." Thin-Walled Structures, 62, 96-108. [DOI:10.1016/j.tws.2012.06.007]
3. [3] Attarnejad R. (2010). "Basic displacement functions in analysis of non-prismatic beams." Engineering Computations, 27, 733-776. [DOI:10.1108/02644401011062117]
4. [4] Attarnejad R., Shahba A., Jandaghi Semnani S. (2011). "Analysis of non-prismatic Timoshenko beams using basic displacement functions." Advances in Structural Engineering, 14 (2), 319-332. [DOI:10.1260/1369-4332.14.2.319]
5. [5] Aucoello N.M., Ercolano A. (2002). "A general solution for dynamic response of axially loaded non-uniform Timoshenko beams." Solids and Structures, 41(18-19), 4861-4874. [DOI:10.1016/j.ijsolstr.2004.04.036]
6. [6] Banerjee J.R., Su H., Jackson D.R. (2006). "Free vibration of rotating tapered beams using the dynamic stiffness method." Journal of Sound and Vibration, 298, 1034-1054. [DOI:10.1016/j.jsv.2006.06.040]
7. [7] Chen C.N. (2002). "DQEM vibration analysis of non-prismatic shear deformable beams resting on elastic foundations." Journal of Sound and Vibration, 255 (5), 989-999. [DOI:10.1006/jsvi.2001.4176]
8. [8] Elishakoff I., Becquet R. (2000). "Closed-form solutions for natural frequencies for inhomogeneous beams with one sliding support and the other pinned." Journal of Sound and Vibration, 238, 529-553. [DOI:10.1006/jsvi.2000.3009]
9. [9] Elishakoff I., Guede Z. (2001). "A remarkable nature of the effect of boundary conditions on closed-form solutions for vibrating inhomogeneous Euler-Bernoulli beams." Chaos, Solitons & Fractals, 12, 659-704. [DOI:10.1016/S0960-0779(00)00009-6]
10. [10] Elishakoff I., Guede Z. (2004). "Analytical polynomial solutions for vibrating axially graded beams." Mechanics of Advanced Materials and Structures, 11(6), 517-533. [DOI:10.1080/15376490490452669]
11. [11] Esmailzadeh E., Ohadi A.R. (2000). "Vibration and stability analysis of non-uniform Timoshenko beams under axial and distributed tangential loads." Journal of Sound and Vibration, 236 (3), 443-456. [DOI:10.1006/jsvi.2000.2999]
12. [12] Hibbitt, D., Karlsson, B., Sorensen, P. (2011). Simulia ABAQUS 6. 11 Users' Manual.
13. [13] Huang Y., Li X.F.A. (2010). "New approach for free vibration of axially functionally graded beams with non-uniform cross-section." Journal of Sound and Vibration, 329(11), 2291-2303. [DOI:10.1016/j.jsv.2009.12.029]
14. [14] Huang Y., Yang L., Luo Q. (2013). "Free vibration of axially functionally graded Timoshenko beams with non-uniform cross-section." Composites: Part B, 45 (1), 1493-1498. [DOI:10.1016/j.compositesb.2012.09.015]
15. [15] Irie T, Yamada G, Takahashi I. (1980). "Vibration and stability of non-uniform Timoshenko beam subjected to a follower force." Journal of Sound and Vibration, 70, 503-512. [DOI:10.1016/0022-460X(80)90320-X]
16. [16] Jategaonkar R and Chehil DS. (1989). "Natural frequencies of a beam with varying section properties." Journal of Sound and Vibration, 133, 303-322. [DOI:10.1016/0022-460X(89)90928-0]
17. [17] Karabalis DL. (1983). "Static dynamic and stability analysis of structures composed of tapered beams." Computers and Structures, 16(2), 731-748. [DOI:10.1016/0045-7949(83)90064-0]
18. [18] Kim S-B and Kim M-Y. (2000). "Improved formulation for spatial stability and free vibration of thin-walled tapered beams and space frames." Engineering Structures, 22, 446-458. [DOI:10.1016/S0141-0296(98)00140-0]
19. [19] Lee S.Y., Lin S.M. (1992). "Exact vibration solutions for non-uniform beams with attachments." AIAA Journal, 30 (12), 2930-2934. [DOI:10.2514/3.48979]
20. [20] Lueschen G.G.G., Bergman L.A., McFarland D.M. (1996). "Green's functions for uniform Timoshenko beams." Journal of Sound and Vibration, 194 (1), 93-102. [DOI:10.1006/jsvi.1996.0346]
21. [21] Ozdemir Ozgumus O., Kaya M.O. (2008). "Flapwise bending vibration analysis of a rotating double-tapered Timoshenko beam." Archive of Applied Mechanics, 78 (5), 379-392. [DOI:10.1007/s00419-007-0158-5]
22. [22] Rajasekaran S. (2013). "Free vibration of centrifugally stiffened axially functionally graded tapered Timoshenko beams using differential transformation and quadrature methods." Applied Mathematical Modelling, 37, 4440-4463. [DOI:10.1016/j.apm.2012.09.024]
23. [23] Ruta P. (2006). "The application of Chebyshev Polynomials to the solution of the non-prismatic Timoshenko beam vibration problem." Journal of Sound and Vibration, 296 (1-2), 243-263. [DOI:10.1016/j.jsv.2006.02.011]
24. [24] Shahba A., Attarnejad R., Hajilara S. (2011). "Free vibration and stability of axially functionally graded tapered Euler-Bernoulli beams." Shock and Vibration, 18(5), 683-696. [DOI:10.1155/2011/591716]
25. [25] Shahba A., Attarnejad R., Tavanaie Marvi M., Hajilar S. (2011). "Free vibration and stability analysis of axially functionally graded tapered Timoshenko beams with classical and non-classical boundary conditions." Composites: Part B, 42 (4), 801-808. [DOI:10.1016/j.compositesb.2011.01.017]
26. [26] Shahba A., Attarnejad R., Hajilar S. (2013). "A mechanical-based solution for axially functionally graded tapered Euler-Bernoulli beams." Mechanics of Advanced Materials and Structures, 20, 696-707. [DOI:10.1080/15376494.2011.640971]
27. [27] Shahba A., Attarnejad R., Zarrinzadeh H. (2013). "Free Vibration Analysis of Centrifugally Stiffened Tapered Functionally Graded Beams." Mechanics of Advanced Materials and Structures, 20(5), 331-338. [DOI:10.1080/15376494.2011.627634]
28. [28] Singh K.V., Li G. (2009). "Buckling of functionally graded and elastically restrained non-uniform columns." Composites: Part B, 40(5), 393-403. [DOI:10.1016/j.compositesb.2009.03.001]
29. [29] Soltani M., Asgarian B., Mohri F. (2014). "Buckling and free vibration analyses of tapered thin-walled beams by power series method." Journal of constructional steel research, 96, 106-126. [DOI:10.1016/j.jcsr.2013.11.001]
30. [30] Soltani M., Mohri F. (2016). "Stability and vibration analyses of tapered columns resting on one or two-parameter elastic foundations." Numerical methods in civil engineering, 2, 57-66.
31. [31] Sorrentino S., Fasana A., Marchesiello S. (2007). "Analysis of non-homogeneous Timoshenko beams with generalized damping distributions." Journal of Sound and Vibration, 304, 779-92. [DOI:10.1016/j.jsv.2007.03.038]
32. [32] Tong X., Tabarrok B. (1995). "Vibration analysis of Timoshenko beams with non-homogeneity and varying cross-section." Journal of Sound and Vibration, 186, 821-35. [DOI:10.1006/jsvi.1995.0490]
33. [33] Wu L., Wang Q.S., Elishakoff I. (2005). "Semi-inverse for axially functionally graded beams with an anti-symmetric vibration mode." Journal of Sound and Vibration, 284(3-5), 1190-1202. [DOI:10.1016/j.jsv.2004.08.038]
34. [34] Yokoyama T. (1988). "Parametric instability of Timoshenko beams resting on an elastic foundation." Computers and Structures, 28 (2), 207-216. [DOI:10.1016/0045-7949(88)90041-7]
35. [35] Zhu B., Leung A.Y.T. (2009). "Linear and nonlinear vibration of non-uniform beams on two-parameter foundations using p-elements." Computers and Geotechnics, 36, 743-750. [DOI:10.1016/j.compgeo.2008.12.006]
36. [36] MATLAB Version7.6.MathWorks Inc, USA, 2008. [DOI:10.1016/S1365-6937(08)70308-3]

Add your comments about this article : Your username or Email:

Send email to the article author