Volume 1, Issue 4 (6-2017)                   NMCE 2017, 1(4): 45-53 | Back to browse issues page


XML Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Jamshidzadeh Z, Ghasemzadeh H. The effects of cut-off walls on repulsing saltwater based on modeling of density-driven groundwater flow and salt transport. NMCE. 2017; 1 (4) :45-53
URL: http://nmce.kntu.ac.ir/article-1-94-en.html
Assistant professor, Faculty of Engineering, University of Kashan, Kashan, Iran , jamshidzadeh@kashanu.ac.ir
Abstract:   (1681 Views)

Abstract:

 
A two-dimensional fully implicit finite difference model, which can be easily extended to three dimensions, is developed to study the effect of cut-off walls on saltwater intrusion into the aquifers. This model consists of a coupled system of two nonlinear partial differential equations which describe unsteady density-driven groundwater flow and solute transport. The numerical model is verified by the Henry problem. A good agreement between this model and the semianalitical solution of Henry problem shows the efficiency of this method for seawater intrusion problems. The effect of cut-off walls on reduction of saltwater intrusion in the Henry problem is investigated. Furthermore, the effect of geometric parameters of the cut-off wall such as depth and distance from the coast on repulsing saltwater is considered. Subsequently, the application of the presented model is considered to evaluate the effect of cut-off wall on repulsing salt water intruded by a pumping well located above the transition zone, which demonstrates that the cut-off wall has strong impact on repulsing saltwater intruded. For example, it repulses more than 45% salt water intruded by the discharge well in the Henry problem.
Full-Text [PDF 1077 kb]   (580 Downloads)    
Type of Study: Research | Subject: General

References
1. [1] Ackerer, Ph., Younès, A., Mosé, R., "Modeling variable density flow and solute transport in porous medium: Numerical model and verification", Transport in porous media, vol. 35, 1999, p.345-373. [DOI:10.1023/A:1006564309167]
2. [2] Antonellini, M., Mollema, P., Giambastiani, B., Bishop, K., Caruso, L., Minchio, A., Pellegrini, L., Sabia, M., Ulazzi, E., Gabbianelli, G, "Salt water intrusion in the coastal aquifer of the southern Po Plain, Italy", Hydrogeology Journal, vol.16, 2008, p.1541-1556. [DOI:10.1007/s10040-008-0319-9]
3. [3] Ataie-Ashtiani, B., "MODSharp: Regional-scale numerical model for quantifying groundwater flux and contaminant discharge into the coastal zone", Journal of Environmental Modeling & Software, vol. 22, 2007, p. 1307-1315. [DOI:10.1016/j.envsoft.2006.07.005]
4. [4] Bear, J., "Hydraulic of groundwater", McGraw-Hill, New York; 1979.
5. [5] Bear, J., Cheng, A.H.D, Sorek, S., Ouazar, D., Herrera, I., "Seawater intrusion in coastal aquifers: concepts, methods and practices, Theory and Applications of Transport in Porous Media", 14.Kluwer, Dordrecht, The Netherlands, 1999. [DOI:10.1007/978-94-017-2969-7]
6. [6] Bear. J., Cheng, A.H.D., "Modeling Groundwater Flow and Contaminant Transport", Springer Dordrecht Heidelberg London, New York 2010, pp 834. [DOI:10.1007/978-1-4020-6682-5]
7. [7] Crestani, E., Camporese, M., Salandin, P., "Numerical and physical modeling of cutoff walls against saltwater intrusion", 19th EGU General Assembly, EGU 2017, Vienna, Austria, p.18080.
8. [8] Daniel, D.E., Koerner, R.M., "On the use of geomembranes in vertical barriers: Advances in transportation and geoenvironmental systems using geosynthetics", ASCE GSP, vol. 103, 81-93, doi:10.1061/40515(291)5. [DOI:10.1061/40515(291)5]
9. [9] Delsman, J.R., Hu-a-ng, K.R.M., Vos, P.C., de Louw, P.G.B., Oude Essink, G.H.P., Stuyfzand, P.J., Bierkens, M.F.P., "Paleo-modeling of coastal saltwater intrusion during the Holocene: an application to the Netherlands", Hydrology and Earth System Sciences, vol. 18, 2014, p.3891-3905, [DOI:10.5194/hess-18-3891-2014]
10. [10] Diersch, H.J.G., Kolditz, O., "Coupled groundwater flow and transport: Thermohaline and 3D convection systems", Advances in Water Resources, vol. 21, 1998, p. 401-425. [DOI:10.1016/S0309-1708(97)00003-1]
11. [11] Guo, W., Langevin, C.D., "User's Guide to SEAWAT: A Computer Program for Simulation of Three- Dimensional Variable-Density Ground-Water Flow", Techniques of Water-Resources Investigations of the U.S. Geological Survey; 2002.
12. [12] Henry, H.R., "Effects of dispersion on salt encroachment in coastal aquifers, in Sea Water in Coastal Aquifers", U.S. Geological Survey, vol. 1613-C, 1964, p.70-84.
13. [13] Hughes, J.D., Sanford, W.E., "SUTRA-MS: A Version of SUTRA Modified to Simulate Heat and Multiple-Solute Transport", U.S. Department of the Interior, Geological Survey 2004, p 152.
14. [14] Huyakorn, P.S, Andersen, P.F., Mercer, J.W., White, H.O., "Saltwater intrusion in aquifers-development and testing of a three-dimensional finite-element model", Water Resources Research, vol. 23, 1987, p. 293-312. [DOI:10.1029/WR023i002p00293]
15. [15] Insigne, M.L., Kim, G., "Saltwater Intrusion Modeling in the Aquifer Bounded by Manila bay and Paranaque River, Philippines", Environmental Engineering Research, vol. 15(2), 2010, p.117-121. [DOI:10.4491/eer.2010.15.2.117]
16. [16] Jamshidzadeh, Z., Tsai, F.T.C., Mirbagheri, S.A., Ghasemazadeh, H., "Fluid dispersion effects on density-driven thermohaline flow and transport in porous media", Advances in Water Resources, vol. 61, 2013, p.12-28. [DOI:10.1016/j.advwatres.2013.08.006]
17. [17] Kaleris, V.K., Ziogas, A.L., "The effect of cutoff walls on saltwater intrusion and groundwater extraction in coastal aquifers", Journal of Hydrology, vol. 476, 2013, p. 370-383. [DOI:10.1016/j.jhydrol.2012.11.007]
18. [18] Kipp, K.L.Jr., "Guide to the revised heat and solute transport simulator: HST3D - Version 2", Water-Resources Investigations Report 97-4157, Denver, Colorado. USGS; 1997.
19. [19] Kolditz, O., Ratke, R., Diersch, H.J.G., Zielke, W., "Coupled groundwater slow and transport: 1. Verification of variable density flow and transport models", Advances in Water Resources, vol. 21, 1997, p. 27-46. [DOI:10.1016/S0309-1708(96)00034-6]
20. [20] Kopsiaftis, G., Mantoglou, A., Giannoulopoulos, P., "Variable density coastal aquifer models with application to an aquifer on Thira Island", Journal of Desalination, vol. 237, 2009, p.65-80. [DOI:10.1016/j.desal.2007.12.023]
21. [21] Langevin, C.D., Shoemaker, W. B., Guo, W., "MODFLOW-2000, the U.S. Geological Survey Modular Ground-Water Model-Documentation of the SEAWAT-2000 Version with the Variable-Density Flow Process (VDF) and the Integrated MT3DMS Transport Process (IMT)", U.S. Geological Survey, Miami 2003; p 54. [DOI:10.3133/ofr03426]
22. [22] Lin, J., Snodsmith, J.B., Zheng, Ch., Wu, J., "A modeling study of seawater intrusion in Alabama Gulf Coast, USA", Journal of Environmental Geology, vol. 57, 2009, p.119-130. [DOI:10.1007/s00254-008-1288-y]
23. [23] Luyun, R. Jr., Momii, K., Nakagawa, K., Fujiyama, S., "Saltwater dynamics due to cut-off wall installation in coastal unconfined aquifers: experimental and numerical studies, Calibration and Reliability in Groundwater Modelling: Credibility in Modelling", IAHS Publ., vol. 320, 2008, p. 214-219.
24. [24] Luyun, R., Momii, K., Nakagava, K., Takahashi, M., "Effects of Artificial Reacharge and Physical Barrier on Seawater Intrusion", Annual Journal of Hydraulic Engineering, JSCE, vol. 53, 2009, p. 85-90.
25. [25] Oude Essink, G.H.P., "MOC3D adapted to simulate 3D density-dependent groundwater flow", In Proceedings of MODFLOW '98 Conference at the International Ground Water Modeling Center, Golden, Colorado: Colorado School of Mines, vol. 1, 1998, p. 291-300.
26. [26] Paniconi, C., Khlaifi, I., Lecca, G., Giacomelli, A., Tarhouni, J., "A Modeling Study of Seawater Intrusion in the Korba Coastal Plain, Tunisia", Journal of Physics and Chemistry of Earth (B), vol. 26(4), 2001, p. 345-351. [DOI:10.1016/S1464-1909(01)00017-X]
27. [27] Paster, A., Dagan, G., Guttman, J., "The salt-water body in the Northern part of Yarkon-Taninim aquifer: Field data analysis, conceptual model and prediction", Journal of Hydrology, vol. 323, 2006, p. 154-167. [DOI:10.1016/j.jhydrol.2005.08.018]
28. [28] Shi, L., Cui, L., Park, N., Huyakorn, P.S., "Applicability of a sharp-interface model for estimating steady-state salinity at pumping wells-validation against sand tank experiments", Journal of Contaminant Hydrology, vol. 124, 2011, p. 35-42. doi: 10.1016. [DOI:10.1016/j.jconhyd.2011.01.005]
29. [29] Voss, C.I., Provost, A.M., "SUTRA- A model for saturated-unsaturated variable-density ground-water flow with solute or energy transport", US Geological Survey Water-Resources Investigations, Report, 02-4231, 2002, p 250.
30. [30] Werner, A.D., Gallagher, M.R., "Characterization of sea-water intrusion in the Pioneer Valley, Australia using hydrochemistry and three-dimensional numerical modeling", Journal of Hydrogeology, vol. 14, 2006, p.1452-1469. [DOI:10.1007/s10040-006-0059-7]
31. [31] Zhang, Q., Volker, R.E., Lockington, D.A., "Numerical investigation of seawater intrusion at Gooburrum, Bundaberg, Queensland, Australia", Journal of Hydrogeology, vol. 12, 2004, p. 674-687. [DOI:10.1007/s10040-004-0333-5]

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.