Volume 1, Issue 3 (3-2017)                   NMCE 2017, 1(3): 55-66 | Back to browse issues page


XML Persian Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Meidani H. A simple and efficient plasticity-fracture constitutive model for confined concrete. NMCE 2017; 1 (3) :55-66
URL: http://nmce.kntu.ac.ir/article-1-42-en.html
Assistant Professor, Department of Civil and Environmental Engineering at the University of Illinois at Urbana ,USA
Abstract:   (2642 Views)
A plasticity-fracture constitutive model is presented for prediction of the behavior of confined plain concrete. A three-parameter yield surface is used to define the elastic limit. Volumetric plastic strain is defined as hardening parameter, which together with a nonlinear plastic potential forms a non-associated flow rule. The use of non-associated flow rule improves the prediction of the dilation behavior of concrete under compressive loading. To model the softening behavior, a fracture energy-based function is used to describe strength degradation in post-peak regime. The Euler-forward algorithm is used to integrate the constitutive equations. The proposed model is validated against the results of triaxial compressive experiments. Finally, the behavior of plain concrete confined by layers of carbon fiber reinforced polymer is studied to show capability of the model for passive confinement.
Full-Text [PDF 416 kb]   (1129 Downloads)    
Type of Study: Research | Subject: Special
Received: 2014/05/12 | Revised: 2014/09/1 | Accepted: 2015/01/17 | ePublished ahead of print: 2015/01/27

References
1. [1] Imran, I., Pantazopoulou, S.J. (2001), "Plasticity model for concrete under triaxial compression", J. Struct. Eng., ASCE, 126, 281-290. [DOI:10.1061/(ASCE)0733-9399(2001)127:3(281)]
2. [2] Grassl P., Lundgren K., Gylltoft K. (2002), "Concrete in compression: a plasticity theory with a novel hardening law", Int. J. Solids Struct., 39, 5205-5223. [DOI:10.1016/S0020-7683(02)00408-0]
3. [3] Shen, X., Yang, L., Zhu, F. (2004), "A plasticity-based damage model for concrete", Advances in Structural Engineering, 7(5), 461-467. [DOI:10.1260/1369433042863260]
4. [4] Spoelstra, M.R., Monti, G. (1999), "FRP-confined concrete model", J. Compos. for Constr., ASCE, 143(3), 143-150. [DOI:10.1061/(ASCE)1090-0268(1999)3:3(143)]
5. [5] Mirmiran, A., Shahawy, M. (1997), "Behavior of concrete columns confined by fiber composites", J. Struct. Eng., ASCE, 123(5), 583-590. [DOI:10.1061/(ASCE)0733-9445(1997)123:5(583)]
6. [6] Samaan, M., Mirmiran, A., Shahawy, M. (1998), "Model of concrete confined by fiber composites", J. Struct. Eng., ASCE, 124(9), 1025-1031. [DOI:10.1061/(ASCE)0733-9445(1998)124:9(1025)]
7. [7] Xiao, Y., Wu, H. (2000), "Compressive behavior of concrete confined by carbon fiber composite jackets", J. Materials in Civil Eng., ASCE, 12(2), 139-146. [DOI:10.1061/(ASCE)0899-1561(2000)12:2(139)]
8. [8] Menetrey, Ph., Willam, K.J. (1995), "Triaxial failure criterion for concrete and its generalization", ACI Structural Journal, 92 (3), 311-318. [DOI:10.14359/1132]
9. [9] Kupfer, H., Hilsdorf, H.K., Rusch, H. (1969), "Behavior of concrete under biaxial stresses", ACI Journal, title no. 66-52, 656- 666. [DOI:10.14359/7388]
10. [10] Van Mier, (1984), "Strain-softening of concrete under multiaxial loading conditions", Eindhoven University of Technology, Eindhoven, The Netherlands, pp. 349.
11. [11] Imran, I. (1994), "Applications of non-associated plasticity in modelling the mechanical response of concrete", Ph.D. Thesis, Department of Civil Engineering, University of Toronto, Canada, 208pp.
12. [12] Smith, S.H. (1985), "On fundamental aspects of concrete behavior", M.Sc. Thesis, Department of Civil Engineering, University of Colorado, USA, 192pp.
13. [13] Bazant, Z.P. (1976), "Inelasticity, ductility and size effect in strain-softening concrete", J. Eng. Mech., ASCE, 102, 331-344.
14. [14] Hillerborg, A., Modeer, M., and Peterson, P.E. (1976), "Analysis of crack formation and rack growth in concrete by means of fracture mechanics and Finite Element", Cement and concrete Research, 6, 773-782. [DOI:10.1016/0008-8846(76)90007-7]
15. [15] Pramono, E., and Willam, K.J. (1989), "Fracture energybased placticity formulation of plain concrete", J. Eng. Mech., ASCE, 115(6), 1183-1203. [DOI:10.1061/(ASCE)0733-9399(1989)115:6(1183)]
16. [16] Chen, W.F., Han, D.J. (1988), "Plasticity for Structural Engineers", Springer [DOI:10.1007/978-1-4612-3864-5]
17. [17] Kotsovos, M.D., Newman, J.B. (1980), "Mathematical description of deformational behavior of concrete under generalized stress beyond ultimate strength", J. American Concrete Institute-ACI, 77 (5), 340-346. [DOI:10.14359/7012]
18. [18] Bazant, Z.P., Xiang, Y., Adley, M.D., Prat, P.C., Akers, S.A. (1996), "Microplane model for concrete. II: Data delocalization and verification", J. Eng. Mech., 122 (3), 255-262. [DOI:10.1061/(ASCE)0733-9399(1996)122:3(255)]

Add your comments about this article : Your username or Email:
CAPTCHA