2- Associate Professor, Department of Civil Engineering, Faculty of Engineering, Hakim Sabzevari University, Sabzevar, Iran.

3- Assistant Professor, Department of Civil Engineering, Arak Branch, Islamic Azad University, Arak, Iran. , m-mirhoseini@iau-arak.ac.ir

Type of Study: Research |
Subject:
General

Received: 2022/02/5 | Revised: 2022/04/27 | Accepted: 2022/04/28 | ePublished ahead of print: 2022/06/6

Received: 2022/02/5 | Revised: 2022/04/27 | Accepted: 2022/04/28 | ePublished ahead of print: 2022/06/6

1. Sihag, P., Tiwari, N. K., & Ranjan, S. (2017). Modelling of Infiltration of Sandy Soil Using Gaussian Process Regression. Modeling Earth Systems and Environment, 3(3), 1091-1100. [DOI:10.1007/s40808-017-0357-1]

2. Sinha, S. K., & Wang, M. C. (2008). Artificial Neural Network Prediction Models for Soil Compaction and Permeability. Geotechnical and Geological Engineering, 26(1), 47-64. [DOI:10.1007/s10706-007-9146-3]

3. Chapuis, R. P. (2004). Predicting the Saturated Hydraulic Conductivity of Sand and Gravel Using Effective Diameter and Void Ratio. Canadian Geotechnical Journal, 41(5), 787-795. [DOI:10.1139/t04-022]

4. Boadu, F. K. (2000). Hydraulic Conductivity of Soils From Grain-size Distribution: New Models. Journal of Geotechnical and Geoenvironmental Engineering, 126(8), 739-746. [DOI:10.1061/(ASCE)1090-0241(2000)126:8(739)]

5. Elbisy, M. S. (2015). Support Vector Machine and Regression Analysis to Predict the Field Hydraulic Conductivity of Sandy Soil. KSCE Journal of Civil Engineering, 19(7), 2307-2316. [DOI:10.1007/s12205-015-0210-x]

6. Zhu, P., Zhang, G., & Zhang, B. (2022). Soil Saturated Hydraulic Conductivity of Typical Revegetated Plants on Steep Gully Slopes of Chinese Loess Plateau. Geoderma, 412, Article e115717. [DOI:10.1016/j.geoderma.2022.115717]

7. Samadi, M., Afshar, M. H., Jabbari, E., & Sarkardeh, H. (2021). Prediction of Current-induced Scour Depth Around Pile Groups Using MARS, CART, and ANN Approaches. Marine Georesources & Geotechnology, 39(5), 577-588. [DOI:10.1080/1064119X.2020.1731025]

8. Samadi, M., Jabbari, E., Azamathulla, H. M., & Mojallal, M. (2015). Estimation of Scour Depth Below Free Overfall Spillways Using Multivariate Adaptive Regression Splines and Artificial Neural Networks. Engineering Applications of Computational Fluid Mechanics, 9(1), 291-300. [DOI:10.1080/19942060.2015.1011826]

9. Alizadeh, M. J., Shabani, A., & Kavianpour, M. R. (2017). Predicting Longitudinal Dispersion Coefficient Using ANN with Metaheuristic Training Algorithms. International Journal of Environmental Science and Technology, 14(11), 2399-2410. [DOI:10.1007/s13762-017-1307-1]

10. Mojaradi, B., ALIZADEH, S. F., & Samadi, M. (2018). Estimation of Water Quality Index in Talar River Using Gene Expression Programming and Artificial Neural Networks. Iranian Journal of Watershed Management Science and Engineering, 12(41), 61- 72.

11. Samadi, M., Sarkardeh, H., & Jabbari, E. (2021). Prediction of the Dynamic Pressure Distribution in Hydraulic Structures Using Soft Computing Methods. Soft Computing, 25(5), 3873-3888. [DOI:10.1007/s00500-020-05413-6]

12. Samadi, M., Sarkardeh, H., & Jabbari, E. (2020). Explicit Data-driven Models for Prediction of Pressure Fluctuations Occur During Turbulent Flows on Sloping Channels. Stochastic Environmental Research and Risk Assessment, 34(5), 691-707. [DOI:10.1007/s00477-020-01794-0]

13. Taban, M. H., Hajiazizi, M., & Ghobadian, R. (2019). Predicting the Value of the Rock Quality Index in the Q-system Using Gene Expression Programming. Journal of Numerical Methods in Civil Engineering, 4(2), 44-54. [DOI:10.52547/nmce.4.2.44]

14. Samadi, M., Afshar, M. H., Jabbari, E., & Sarkardeh, H. (2020). Application of Multivariate Adaptive Regression Splines and Classification and Regression Trees to Estimate Wave-induced Scour Depth Around Pile Groups. Iranian Journal of Science and Technology, Transactions of Civil Engineering, 44(1), 447-459. [DOI:10.1007/s40996-020-00364-2]

15. Pham, B.T., Ly, H.B., Al-Ansari, N. and Ho, L.S., 2021. A Comparison of Gaussian Process and M5P for Prediction of Soil Permeability Coefficient. Scientific Programming, 2021, Article e3625289. [DOI:10.1155/2021/3625289]

16. Ferreira, C. (2006). Gene Expression Programming. Berlin: Springer.

17. Terzi, Ö., & Ergin, G. (2014). Forecasting of Monthly River Flow with Autoregressive Modeling and Data-driven Techniques. Neural Computing and Applications, 25(1), 179-188. [DOI:10.1007/s00521-013-1469-9]

18. Karbasi, M., & Azamathulla, H. M. (2017). Prediction of Scour Caused by 2D Horizontal Jets Using Soft Computing Techniques. Ain Shams Engineering Journal, 8(4), 559-570. [DOI:10.1016/j.asej.2016.04.001]

19. Terzi, Ö. (2013). Daily Pan Evaporation Estimation Using Gene Expression Programming and Adaptive Neural-based Fuzzy Inference System. Neural Computing and Applications, 23(3), 1035-1044. [DOI:10.1007/s00521-012-1027-x]

20. Haykin, S. (1994). Neural networks, 2nd Edition. New York: Prentice Hall.

21. Hornik, K., Stinchombe, M., & White, H. (1989). Multilayer Feed-forward Network and Universal Approximator. Neural Network. 2(5), 359-366. [DOI:10.1016/0893-6080(89)90020-8]

22. Swingler, K. (1996). Applying Neural Networks: A Practical Guide. New York: Academic Press.

23. Ayoubloo, M. K., Azamathulla, H. M., Jabbari, E., & Zanganeh, M. (2011). Predictive Model-based for the Critical Submergence of Horizontal Intakes in Open Channel Flows with Different Clearance Bottoms Using CART, ANN and Linear Regression Approaches. Expert Systems with Applications, 38(8), 10114-10123. [DOI:10.1016/j.eswa.2011.02.073]

24. Kamranzad, B., & Samadi, M. (2013). Assessment of Soft Computing Models to Estimate Wave Heights in Anzali Port. Journal Of Marine Engineering, 9(17), 27-36.

25. Samadi, M., Jabbari, E., & Azamathulla, H. M. (2014). Assessment of M5′ Model Tree and Classification and Regression Trees for Prediction of Scour Depth Below Free Overfall Spillways. Neural Computing and Applications, 24(2), 357-366. [DOI:10.1007/s00521-012-1230-9]

26. Samadi, M., & Jabbar, E. (2012). Assessment of Regression Trees and Multivariate Adaptive Regression Splines for Prediction of Scour Depth Below the Ski-Jump Bucket Spillway. Journal of Hydraulics, 7(3), 73-79.

Journal of Numerical Methods in Civil Engineering © 2016 by K. N. Toosi University of Technology is licensed under Creative Commons Attribution 4.0 International License