Volume 6, Issue 2 (12-2021)                   NMCE 2021, 6(2): 14-24 | Back to browse issues page

XML Print

Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Mohebbi M, Bakhshinezhad S. Seismic risk-based optimal design of fluid viscous dampers for seismically excited nonlinear structures. NMCE 2021; 6 (2) :14-24
URL: http://nmce.kntu.ac.ir/article-1-382-en.html
1- Professor, Faculty of Engineering, University of Mohaghegh Ardabili , Ardabil, Iran. , Mohebbi@uma.ac.ir
2- PhD, Faculty of Engineering, University of Mohaghegh Ardabili, Ardabil, Iran.
Abstract:   (695 Views)
This paper introduces a procedure to risk-based optimal design of fluid viscous dampers (FVDs). To this end, the exceedance probability of specific performance level during the design lifetime as a safety criterion of the entire building is intended to be minimized. This, along with the minimization of the total damping coefficient of FVDs as the cost criterion of the dissipation system, are the considered objective functions. The damping coefficient of FVDs have been considered as design variables and the efficient configurations of damper properties over the height of the building have been determined. A multi-objective optimization framework using the non-dominated sorting genetic algorithm version II (NSGA-II) has been employed to solve the optimization problems and determine the set of Pareto optimal solutions. Linear and nonlinear FVDs with different capacities have been designed for an eight-story shear-type building with bilinear elastic-plastic stiffness behavior under 20 real earthquakes. The results show that the optimal FVDs reduce the seismic response and fragility of the building, while limiting the dampers’ cost.
Full-Text [PDF 643 kb]   (435 Downloads)    
Type of Study: Research | Subject: Special
Received: 2021/04/20 | Revised: 2021/07/17 | Accepted: 2021/08/1 | ePublished ahead of print: 2021/08/14

1. Shariati A, Kamgar R, Rahgozar R. Optimum layout nonlinear fluid viscous damper for improvement the response of tall buildings, Int J Optim Civil Eng 2020; 10(3): 411-431.
2. Hashemi MR, Vahdani R, Gerami M, Kheyrodin A. Viscous damper placement optimization in concrete structures using colliding bodies algorithm and story damage index, Int J Optim Civil Eng 2020; 10(1): 57-70.
3. Moradpour S, Dehestani M. Optimal DDBD procedure for designing steel structures with nonlinear fluid viscous dampers, Struct 2019; 22: 154-174. [DOI:10.1016/j.istruc.2019.08.005]
4. Idels O, Lavan O. Optimization-based seismic design of steel moment-resisting frames with nonlinear viscous dampers, Struct Control Health Monit 2020; 28(1): e2655. [DOI:10.1002/stc.2655]
5. Taylor, Taylor Devices Inc, https://www.taylordevices.com/.
6. Tensa, Tensa Gruppo De Eccher, https://www.tensacciai.it/
7. De Domenico, Ricciardi G, Takewaki I. Design strategies of viscous dampers for seismic protection of building structures: A review, Soil Dyn Earthq Eng 2019; 118(Mar) 144-165. [DOI:10.1016/j.soildyn.2018.12.024]
8. Di paola M, La Mendola L, Navarra G. Stochastic seismic analysis of structures with nonlinear viscous dampers, J Struct Eng 2007; 133(10): 1475-1478. [DOI:10.1061/(ASCE)0733-9445(2007)133:10(1475)]
9. Tubaldi E, Barbato M, DallAsta A. Performance-based seismic risk assessment for buildings equipped with linear and nonlinear viscous dampers, Eng Struct 2014; 78: 90-99. [DOI:10.1016/j.engstruct.2014.04.052]
10. Dall'Asta A, Tubaldi E, Ragni L. Influence of the nonlinear behavior of viscous dampers on the seismic demand hazard of building frames, Earthq Eng Struct Dyn 2016; 45(1): 149-169. [DOI:10.1002/eqe.2623]
11. Guneyisi EM, Altay G. Seismic fragility assessment of effectiveness of viscous dampers in R/C buildings under scenario earthquakes, Struct Saf 2008; 30(5): 461-480. [DOI:10.1016/j.strusafe.2007.06.001]
12. Lavan O, Avishur M. Seismic behavior of viscously damped yielding frames under structural and damping uncertainties, Bull Earthq Eng 2013; 11(6): 2309-2332. [DOI:10.1007/s10518-013-9479-7]
13. Dall'Asta A, Scozzese F, Ragni L, Tubaldi E. Effect of the damper property variability on the seismic reliability of systems equipped with viscous dampers. Bull Earthq Eng 2017; 15: 5025-5053. [DOI:10.1007/s10518-017-0169-8]
14. Shu Z, Li S, Sun X, He M. Performance-based seismic design of a pendulum tuned mass damper system, J Earthq Eng 2019; 23(2): 334-355. [DOI:10.1080/13632469.2017.1323042]
15. Radu A, Lazar IF, Neild SA. Performance-based seismic design of tuned inerter dampers, Struct Control Health Monit 2019; 26(5): e2346. [DOI:10.1002/stc.2346]
16. Altieri D, Tubaldi E, Angelis MD, Patelli E, Dall'Asta A. Reliability-based optimal design of nonlinear viscous dampers for the seismic protection of structural systems, Bull Earthq Eng 2018; 16(2): 963-982. [DOI:10.1007/s10518-017-0233-4]
17. Kiureghian AD. Non-ergodicity and PEER's framework formula, Earthq Eng Struct Dynamics 2005; 34(13): 1643-1652. [DOI:10.1002/eqe.504]
18. Cornell CA, Jalayer F, Hamburger RO, Foutch DA. Probabilistic basis for 2000 SAC federal emergency management agency steel moment frame guidelines, J Struct Eng 2002; 128(4): 526-533. [DOI:10.1061/(ASCE)0733-9445(2002)128:4(526)]
19. Bakhshinezhad S, Mohebbi M. Multiple failure function based fragility curves for structures equipped with TMD, Earthq End Eng Vib 2021; 20(2): 471-482. [DOI:10.1007/s11803-021-2032-9]
20. Bakhshinezhad S, Mohebbi M. Fragility curves for structures equipped with optimal SATMDs, Int J Optim Civil Eng 2019; 9(3): 437-455.
21. Ellingwood BR, Kinali K. Quantifying and communicating uncertainty in seismic risk assessment, Struct Saf 2009; 31(2): 179-187. [DOI:10.1016/j.strusafe.2008.06.001]
22. FEMA 356. Prestandard and commentary for the seismic rehabilitation of buildings prepared by the American Society of Civil Engineers for the Federal Emergency Management Agency, Washington, D.C, 2000.
23. Mohebbi M, Bakhshinezhad S. Multiple performance criteria-based risk assessment for structures equipped with MR dampers, Earthq Struct 2021; 20(5): 495-512. [DOI:10.1007/s11803-021-2032-9]
24. Pollini N, Lavan O, Amir O. Optimization-based minimum-cost seismic retrofitting of hysteretic frames with nonlinear fluid viscous dampers, Earth Eng Struct Dyn 2018; 47(15): 2985-3005. [DOI:10.1002/eqe.3118]
25. De Domenico D, Ricciardi G. Earthquake protection of structures with nonlinear viscous dampers optimized through an energy-based stochastic approach, Eng Struct 2019; 179: 523-539. [DOI:10.1016/j.engstruct.2018.09.076]
26. Aydin E, Öztürk B, Dutkiewicz M. Analysis of efficiency of passive dampers in multistorey buildings, J Sound Vib 2019; 439: 17-28. [DOI:10.1016/j.jsv.2018.09.031]
27. Shabani A, Asgarian B, Salido M. Search and rescue optimization algorithm for size optimization of truss structures with discrete variables, Int J Numer Methods Civil Eng 2019; 3(3): 28-39. [DOI:10.29252/nmce.3.3.28]
28. Shabani A, Asgarian B, Salido M, Gharebaghi SA. Search and rescue optimization algorithm: A new optimization method for solving constrained engineering optimization problems, Expert Systems with Applications 2020; 161: 113698. [DOI:10.1016/j.eswa.2020.113698]
29. Shabani A, Asgarian B, Salido M, Gharebaghi SA, Salido MA, Giret A. A new optimization algorithm based on search and rescue operations, Mathematical Problems in Engineering 2019. [DOI:10.1155/2019/2482543]
30. Holland JH. Adaptation in Natural and Artificial Systems, Ann Arbor: The University of Michigan Press, 1975.
31. Moradi M, Bagherieh AR, Esfahani MR. Damage and plasticity of conventional and high-strength concrete part1: statistical optimization using genetic algorithm, Int J Optim Civil Eng 2018; 8(1): 77-99.
32. Gholizadeh S, Kamyab R, Dadashi H. Performance-based design optimization of steel moment frames, Int J Optim Civil Eng 2013; 3(2): 327-43.
33. Biabani Hamedani K, Kalatjari VR. Structural system reliability-based optimization of truss structures using genetic algorithm, Int J Optim Civil Eng 2018; 8(4): 565-86.
34. Mohebbi M, Moradpour S, Ghanbarpour Y. Improving the seismic behavior of nonlinear steel structures using optimal MTMDs, Int J Optim Civil Eng 2014; 4(1): 137-50.
35. Mohebbi M, Bagherkhani A. Optimal design of Magneto-Rheological Dampers, Int J Optim Civil Eng 2014; 4(3): 361-80.
36. Mohebbi M, Dadkhah H. Optimal smart isolation system for multiple earthquakes, Int J Optim Civil Eng 2019; 9(1): 19-37. [DOI:10.1155/2018/7382481]
37. Goldberg DE. Genetic Algorithms in Search, Optimization and Machine Learning, Reading MA: Addison-Wesley, 1989.
38. Srinivas N, Deb K. Multiobjective optimization using nondominated sorting in genetic algorithms, Evol Comput 1994; 2(3): 221-248. [DOI:10.1162/evco.1994.2.3.221]
39. Deb K, Pratap A, Agarwal S, Meyarivan T. A fast and elitist multiobjective genetic algorithm: NSGA-II, IEEE T Evolut Comput 2002; 6(2): 182-197. [DOI:10.1109/4235.996017]
40. Deb K, Jain H. An evolutionary many-objective optimization algorithm using reference-point-based nondominated sorting approach, Part I: Solving problems with box constraints, IEEE T Evolut Comput 2014; 18(4): 577-601. [DOI:10.1109/TEVC.2013.2281535]
41. Bakhshinezhad S, Mohebbi M. Multi-objective optimal design of semi-active fluid viscous dampers for nonlinear structures using NSGA-II, Struct 2020; 24: 678-689. [DOI:10.1016/j.istruc.2020.02.004]
42. Bakhshinezhad S, Mohebbi M. Multiple failure criteria-based fragility curves for structures equipped with SATMDs, Earthq Struct 2019; 17(5): 463-475.
43. Iervolino I, Cornell CA. Record selection for nonlinear seismic analysis of structures, Earthq Spectra 2005; 21(3): 685-713. [DOI:10.1193/1.1990199]
44. Kiani J, Camp C, Pezeshk S. On the number of required response history analyses, Bull Earthq Eng 2018; 16: 5195-5226. [DOI:10.1007/s10518-018-0381-1]

Add your comments about this article : Your username or Email:

Send email to the article author