Volume 3, Issue 3 (3-2019)                   NMCE 2019, 3(3): 28-39 | Back to browse issues page


XML Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Shabani A, Asgarian B, Salido M. Search and Rescue Optimization Algorithm for Size Optimization of Truss Structures with Discrete Variables. NMCE. 2019; 3 (3) :28-39
URL: http://nmce.kntu.ac.ir/article-1-197-en.html
Professor, Faculty of Civil Engineering, K.N.Toosi University of Technology, Tehran, Iran. , asgarian@kntu.ac.ir
Abstract:   (652 Views)
In this paper, a new metaheuristic algorithm is developed to sizing optimization of truss structures with discrete variables. The proposed algorithms namely search and rescue optimization algorithm (SAR), imitates the exploration behavior of humans during search and rescue operations. The performance of the proposed algorithm is evaluated using several discrete truss design problems and the obtained results compared with the results of other optimization algorithms. The comparisons demonstrated that the best averages and standard deviations of results were obtained by SAR for all the studied problems and the proposed algorithm outperforms the other compared optimization algorithms in terms of finding the optimized weight of the truss (accuracy). According to the numerical results, it can be concluded that SAR is a very efficient and robust algorithm for designing truss structures with discrete variables.
Full-Text [PDF 1221 kb]   (443 Downloads)    
Type of Study: Research | Subject: General

References
1. [1] Deb, K. "Optimization for engineering design: Algorithms and examples", PHI Learning Pvt. Ltd. 2012.
2. [2] Yang, X. S. "A new metaheuristic bat-inspired algorithm". Nature inspired cooperative strategies for optimization (NICSO 2010). Springer 2010. [DOI:10.1007/978-3-642-12538-6_6]
3. [3] Kaveh, A., Azar, B. F. & Talatahari, S. "Ant colony optimization for design of space trusses". Int. J. Space. Struct., vol. 23, 2008, p. 167-181. [DOI:10.1260/026635108786260956]
4. [4] Cheng, M. Y. & Prayogo, D. "A novel fuzzy adaptive teaching-learning-based optimization (FATLBO) for solving structural optimization problems". Eng. Comput., vol. 33, 2017, p. 55-69. [DOI:10.1007/s00366-016-0456-z]
5. [5] Kennedy, J., Eberhart, R. "Particle swarm optimization". In: NETWORKS, I. I. C. O. N. (ed.). Perth, WA, Australia: IEEE 1995.
6. [6] Du, K. L. & Swamy, M. "Particle swarm optimization". Search and optimization by metaheuristics. Springer 2016. [DOI:10.1007/978-3-319-41192-7]
7. [7] Kaveh, A. & Hosseini, P. "A simplified dolphin echolocation optimization method for optimum design of trusses". Int. J. Optim. Civil. Eng., vol. 4, 2014, p. 381-397.
8. [8] Kaveh, A., Hosseini Vaez, S. & Hosseini, P. "Simplified dolphin echolocation algorithm for optimum design of frame". Smart Struct Syst, vol. 21, 2018, p. 321-333.
9. [9] Lee, K. S., Geem, Z. W., Lee, S. H. & Bae, K. W. "The harmony search heuristic algorithm for discrete structural optimization". Eng. Optimiz., vol. 37, 2005, p. 663-684. [DOI:10.1080/03052150500211895]
10. [10] Kaveh, A. & Talatahari, S. "Charged system search for optimal design of frame structures". Appl. Soft. Comput., vol. 12, 2012, p. 382-393. [DOI:10.1016/j.asoc.2011.08.034]
11. [11] Kaveh, A., Vaez, S. H. & Hosseini, P. "Performance of the Modified Dolphin Monitoring Operator for Weight Optimization of Skeletal Structures". Period. Polytech-CIV., vol., 2017, p. [DOI:10.3311/PPci.9691]
12. [12] Kaveh, A., Bakhshpoori, T. & Azimi, M. "Seismic optimal design of 3D steel frames using cuckoo search algorithm". The Structural Design of Tall and Special Buildings, vol. 24, 2015, p. 210-227. [DOI:10.1002/tal.1162]
13. [13] Kaveh, A. & Talatahari, S. "A particle swarm ant colony optimization for truss structures with discrete variables". J. Constr. Steel. Res., vol. 65, 2009, p. 1558-1568. [DOI:10.1016/j.jcsr.2009.04.021]
14. [14] Lamberti, L. "An efficient simulated annealing algorithm for design optimization of truss structures". Comput. Struct., vol. 86, 2008, p. 1936-1953. [DOI:10.1016/j.compstruc.2008.02.004]
15. [15] Camp, C. V. & Bichon, B. J. "Design of space trusses using ant colony optimization". J. Struct. Eng., vol. 130, 2004, p. 741-751. [DOI:10.1061/(ASCE)0733-9445(2004)130:5(741)]
16. [16] Degertekin, S. & Hayalioglu, M. "Sizing truss structures using teaching-learning-based optimization". Comput. Struct., vol. 119, 2013, p. 177-188. [DOI:10.1016/j.compstruc.2012.12.011]
17. [17] Kaveh, A. & Ghazaan, M. I. "A comparative study of CBO and ECBO for optimal design of skeletal structures". Comput. Struct., vol. 153, 2015, p. 137-147. [DOI:10.1016/j.compstruc.2015.02.028]
18. [18] Stolpe, M. "Truss optimization with discrete design variables: a critical review". Struct. Multidiscipl. Optim., vol. 53, 2016, p. 349-374. [DOI:10.1007/s00158-015-1333-x]
19. [19] Shabani, A., Asgarian, B., Gharebaghi, S. A., Salido, M. A. & Giret, A. " A New Optimization Algorithm Based on Search and Rescue Operations ". Math. Probl. Eng., vol. 2019, 2019. [DOI:10.1155/2019/2482543]
20. [20] Astm. "F1847: Standard Guide for Demonstrating Minimum Skills of Search and Rescue Dogs". West Conshohocken, PA, USA: ASTM International 2012.
21. [21] Management, K. E. "SAR Field Search Methods: Search Tecniques Used by Trained Teams in the Field" [Online]. Kentucky Emergency Management. Available: https://kyem.ky.gov/Who%20We%20Are/Documents/SAR%20Field%20Search%20Methods.pdf [Accessed May 07 2019].
22. [22] Li, L., Huang, Z., Liu, F. & Wu, Q. "A heuristic particle swarm optimizer for optimization of pin connected structures". Comput. Struct., vol. 85, 2007, p. 340-349. [DOI:10.1016/j.compstruc.2006.11.020]
23. [23] Sonmez, M. "Discrete optimum design of truss structures using artificial bee colony algorithm". Struct. Multidiscipl. Optim., vol. 43, 2011, p. 85-97. [DOI:10.1007/s00158-010-0551-5]
24. [24] Gholizadeh, S. & Sojoudizadeh, R. "Modified Sine-Cosine Algorithm for Sizing Optimization of Truss Structures with Discrete Design Variables". Iran University of Science & Technology, vol. 9, 2019, p. 195-212.
25. [25] Cheng, M.Y., Prayogo, D., Wu, Y. W. & Lukito, M. M. "A Hybrid Harmony Search algorithm for discrete sizing optimization of truss structure". Automat. Constr., vol. 69, 2016, p. 21-33. [DOI:10.1016/j.autcon.2016.05.023]
26. [26] Ho Huu, V., Nguyen Thoi, T., Vo Duy, T. & Nguyen Trang, T. "An adaptive elitist differential evolution for optimization of truss structures with discrete design variables". Comput. Struct., vol. 165, 2016, p. 59-75. [DOI:10.1016/j.compstruc.2015.11.014]
27. [27] Kaveh, A. & Mahdavi, V. "Colliding bodies optimization method for optimum discrete design of truss structures". Comput. Struct., vol. 139, 2014, p. 43-53. [DOI:10.1016/j.compstruc.2014.04.006]
28. [28] Sadollah, A., Eskandar, H., Bahreininejad, A. & Kim, J. H. "Water cycle, mine blast and improved mine blast algorithms for discrete sizing optimization of truss structures". Comput. Struct., vol. 149, 2015, p. 1-16. [DOI:10.1016/j.compstruc.2014.12.003]
29. [29] Kaveh, A., Ghazaan, M. I. & Bakhshpoori, T. "An improved ray optimization algorithm for design of truss structures". Period. Polytech-CIV., vol. 57, 2013, p. 97-112-97-112. [DOI:10.3311/PPci.7166]

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.