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Abstract: 

Worldwide surveys have shown that autonomous vehicles will enter the transportation networks 

in the following decades. Therefore, investigating and analyzing the impacts of autonomous 

vehicles on traffic has been one of the most exciting issues. Autonomous vehicles affect facilities 

management, including parking location. For example, autonomous vehicles will change 

parking patterns. Conventional vehicle drivers must first find a spot to park their vehicle and 

then walk to their destination. In contrast, autonomous vehicle users can drop off right at their 

destination and do not experience walking or searching time for parking. Hence, modeling 

autonomous vehicles’ effect on parking facilities’ location is an important issue. This study 

seeks to present the optimal location of parking facilities in a mixed AV-HV traffic flow. We 

consider two structure layouts: (i) a corridor and (ii) a grid city. Also, we use the continuum 

approximation approach to model the problem and derive closed-form solutions. We prove that 

the demand (the infrastructure cost) increases (decreases) the required parking facilities. 

Numeric examples show that the share of autonomous vehicles decreases the number of parking 

facilities and the total cost.

D

D1. Introduction 

Finding parking is a major part of travel when travelers use 

personal vehicles. Travelers drive their vehicle from their 

origin to the nearest parking facility, then reach their 

destination by walking. The congestion and the cruising time 

(elapsed time to find a parking spot) increase because of 

insufficient parking spot numbers or inappropriate parking 

allocation. Shoup reports that more than 30% of the traffic 

jams are because of vehicles cruising for parking [1]. IBM 

indicates that drivers, on average, spend 20 minutes 

searching for a parking spot in a transportation network [2]. 

Also, the insufficient number of parking facilities causes 

illegal parking, leading to more accidents and less traffic 

speed [3]. In some countries, there are more parking spots 

than needed. For example, the area designated for parking in 

the US is about 6,500 square miles [4], but the inappropriate 

allocation of parking facilities causes traffic jams. 
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We cannot build parking as much as to cover the 

transportation network because of its costs, emissions, and 

required land areas. Surveys determine that emissions from 

parking infrastructures cost the US between $4B and $20B 

annually [5]. Government has to pay approximately $180K 

for one parking space in Hong Kong [4]. Moreover, we must 

designate significant lands to provide the required parking 

facilities. Litman reports that off-street parking covers 5-

10% of the land in suburban areas, and in downtown areas, 

off-street parking covers 30-50% of the land area [6]. 

Previous studies indicate that building parking cannot 

individually decrease wasted time and may increase costs 

and emissions. Finding the optimal number and location of 

parking facilities is essential because it reduces costs paid by 

governing agencies, operators, and consumers [7]. 

In the last decade, autonomous vehicles (AVs) have 

attracted much attention and have gone from theoretical 

simulations to the emergence of real-world operations. 

Many car manufacturers such as Audi, Ford, GM, Toyota, 

Nissan, and Volvo are studying AVs in the testing phase [8]. 

Testing of AVs and AV pilot services is now existed in at 
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least 36 states in the U.S. [9]. Generally, AV studies include 

various scopes such as vehicle testing, pilots, permits, and 

relevant state regulations [10]. Emerging AVs can change 

trip patterns of goods and travelers, vehicle crash rates, 

public transit usage, walking and cycling, and the need for 

automobile parking [10-11]. Hence, city officials need to 

invest in updating transportation infrastructures to adapt to 

AVs. For example, they may choose to implement sensors 

with bi-directional communication ability and re-evaluate 

on-street and off-street parking models [12]. 

Emerging AVs can change trip patterns significantly. For 

example, travelers who use conventional vehicles (CVs) 

have to drive from their origin to the nearest parking facility 

and then walk toward their destination. Whereas travelers 

that use AVs travel from their origin to their destination, 

then AVs drive from the destination to the nearest parking 

facility without a driver [8]. This pattern affects CV drivers, 

AV users, and decision-makers. Decision-makers do not 

have to build parking facilities in areas with high rent costs. 

AV users can save time, and CV drivers no longer need to 

compete for parking spots. Generally, AVs can change 

traffic flow and required parking space. In the presence of 

AVs, the time that travelers spend from their origin to their 

destination decreases; hence, passengers are willing to use 

AVs. Moreover, AVs can change the number of parking 

facilities and the average space per vehicle. 

AVs can increase the capacity of parking spaces. For 

example, the average space assigned to each AV is 

decreased by 2 square meters in automated and intelligent 

parking systems [4]. Audi is trying to accomplish a parking 

pilot in Boston. Results predict that the required parking 

space can be saved approximately in AVs’ presence [8]. 

Moreover, PARMAR highlights the advantages of AVs and 

their effects on urban environments, such as parking and 

land use [13]. Using AVs decreases the time travelers 

experience in their vehicles, so occupant-free vehicles can 

traverse more distance searching for parking away from their 

destination. The benefits of AVs motivate car manufacturers 

to focus on the effect of AVs on parking provision and 

providing intelligent and automated parking facilities. For 

example, Audi is investing in programs evaluating AVs’ 

impact on land revitalization [4]. 

Several questions arise if AVs enter the transportation 

network. What effects do AVs have on the optimal location 

and the number of parking facilities? What is the 

relationship between the origin and demand distribution 

functions and the location of parking facilities? How does 

the network layout (corridor and grid) influence the problem 

modeling procedure? In this study, we analyze the problem 

and try to answer these questions. Moreover, the discrete 

modeling methodology and the continuum approximation 

(CA) approach are two different methods to model and solve 

transportation problems. In this paper, we distinguish 

between these methods and highlight the performance and 

benefits of the CA approach. 

This study evaluates the parking facility location problem 

w.r.t. AVs’ presence and analyzes the effect of some 

governing agencies’ decisions on the optimal results. Most 

previous studies explore the corridor system layout [4] and 

ignore other system layouts (such as grid layout). We study 

both corridor and grid network layouts. At first, we present 

discrete equations and the optimization function. Then, we 

eliminate the complexity of the problem modeling procedure 

using the CA approach [14]. This approach considers some 

simplifying assumptions, but it provides meaningful insights 

and can investigate the impact of various variables and 

parameters on the social cost and the optimal number of 

parking facilities. Hence, the simplified model helps 

governing agencies make strategic decisions and analyze the 

effects of AVs. Also, governing agencies can pursue the best 

operational decisions. 

We organize the rest of the paper as follows. Various scopes 

of studies are reviewed in Section 2, where we try to 

emphasize highly relevant studies. Sections 3 and 4 explore 

the corridor and the grid structure layouts, respectively. 

Section 5 confirms the presented equations and findings by 

numeric examples. Finally, section 6 summarizes the paper 

and provides some ideas for future works. 

2. Literature Review 

2.1 Facilities location using CA 

In recent years, there has been an increasing tendency to the 

facility location problem. Previous studies considered the 

facility location problem w.r.t. the different assumptions, 

modeling procedures, and perspectives [15-17]. Facility 

location problems can be classified in different ways. One 

way is to classify the literature w.r.t. the modeling approach 

and present two classes: (i) studies that use a discrete 

approach and (ii) studies that use a continuous approach to 

model a facility location problem. The papers placed in the 

first may focus on finding the optimal locations of facilities 

[18-19]. Some others may consider allocation and routing 

strategies to minimize the total cost or maximize the network 

profit [20-22]. Although discrete models are essential and 

derive functional equations, but cannot export meaningful 

insights. Hence, continuous models are applied to derive 

closed-form solutions. In the following, we investigate the 

CA-based literature.   

CA is a superseded approach to various problem modeling. 

This method was proposed for the first time by Newell [23-

24], who replaced discrete parameters with continuous ones. 

CA is used in finding optimal long-term decisions. This 

method gives researchers some advantages over than 

discrete network modeling approach. First, it helps to derive 

closed-form solutions that give significant insights into the 
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effect of decision variables on the objective function. 

Second, it eliminates the complexity of problem modeling 

by making assumptions about the network structure and the 

demand distribution pattern. For instance, Edrisi et al. 

assumed that origins and destinations are independently and 

uniformly distributed in a corridor [25]. The above 

explanations highlight the importance of the CA approach, 

so we explore the CA-based facility location literature in the 

following.  

The CA-based facility location problems can be categorized 

into four general classes [26]. The first class is named 

classical facility location and deals with finding the number 

and location of facilities. Studies of the first class consider a 

set of deterministic and known assumptions. Some papers 

focus only on facility location, but others enter other 

operational considerations into the model. For instance, 

Wang et al. studied a corridor to solve an optimal location 

and pricing model [27]. Bouchery and Fransoo studied an 

allocation and location optimization problem to evaluate an 

inter-modal network’s transportation cost and carbon 

emissions [28]. Ouyang et al. investigated a continuous 

network to optimize the location of facilities concerning 

traffic equilibrium [29]. They conducted numeric examples 

to compare the performance of discrete and approximate 

models. Byrne and Kalcsics considered a network (where a 

set of given facilities are present, and the demand is 

continuously and uniformly distributed) to find the optimal 

location of new facilities [30]. 

The second class of facility location problems examines the 

probability of facility disruption. In this situation, a facility 

may fail, and then its customers have to be served by other 

facilities. Cui et al. combined mixed-integer programming 

and the CA model to minimize total cost under normal and 

failure situations [31]. Lim et al. developed previous models 

by entering the probability parameter of disruption 

misestimation [32]. Bai et al. studied potential operational 

disruptions in bio-ethanol supply chains using discrete and 

continuous models [33]. The third class consists of papers 

that study facility location problems in a competitive 

environment. Dasci and Laporte assumed that demand 

distributes continuously to optimize the optimal facility 

density and compare different strategies such as leader and 

follower layout [34]. Wang et al. used the Stackelberg-Nash 

game to optimize the location of facilities in the biofuel and 

food industry [35]. 

The last class consists of papers that study the discretization 

of CA solutions to find the optimal location and service area 

assigned to each facility. Papers discretize CA solutions with 

the Voronoi diagram. Some studies applied the Voronoi 

diagram method to discretize continuous models and 

implement results for real cases [36-37]. Moreover, Ouyang 

and Daganzo presented a disk method to fix the location of 

facilities w.r.t. service area density derived from CA models 

[38]. Moreover, some studies considered a single source 

facility location to find the optimal assigned capacity to each 

facility and the optimal location of facilities [39]. They 

presented the discrete and continuous models, and the 

solutions were driven using an iterative metaheuristic 

approach and VNS-based metaheuristic technique. CA 

allows us to derivate closed-form models and provide 

meaningful insights for policy decision-makers, but integer-

based models are limited in this capacity [40]. Moreover, 

CA release the complexities of dimensionality of integer 

programs. However, the application of CA in modeling 

parking location w.r.t. AVs is currently limited or non-

existing. 

2.2 Modeling of parking 

Self-park capability can affect the performance and 

acceptance of AVs. For example, a survey declares that 

43.5% of people believe that AVs’ best advantage is their 

self-parking capability [41]. CV drivers try to find an on-

street or off-street parking spot close to the destination. 

However, AVs carry their passengers to the destination and 

are then dispatched to farther and cheaper lots [42]. Hence, 

we explore the parking literature and AV parking models in 

the following.  

Parking studies can be classified into different categories. 

He et al. studied the pricing aspect of parking [43]. They 

formulated a parking game model to solve the optimal 

parking space assignment model concerning prices. Liu and 

Geroliminis focused on the cruising-for-parking problem 

and presented a model to optimize the morning commute 

problem in a congested downtown network [44]. Nourinejad 

and Roorda used bilateral searching and meeting theory to 

evaluate parking enforcement policies in three different 

market regimes [3]. Other aspects such as parking 

competition, optimal parking control strategies, and 

commercial vehicle parking have been studied in detail [45-

47].  

The previous papers are not applicable to the AV parking 

problem because the parking pattern of AVs is different 

from CVs pattern. Nourinejad et al. indicated that car-park 

spaces assigned to CVs should have two rows of vehicles on 

each island, but those assigned to AVs can have multiple 

rows [4]. This type reduces infrastructure costs because the 

required parking space decreases. However, it can lead to 

blockage if the operator does not correctly relocate some 

vehicles. They optimized the number of vehicle relocations 

using a mixed-integer non-linear program. Nourinejad and 

Roorda studied the impact of AVs on cruising for parking in 

a mixed AV-CV traffic flow [48]. They considered a 

corridor with a uniform and linear parking supply function 

and showed that the travel costs of AVs and CVs decrease 

w.r.t. the AV penetration rate. Nourinejad and Amirgholy 

focused on a morning commute problem and introduced a 
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new parking supply design scheme and temporal and spatial 

parking pricing strategies to optimize the system cost [49]. 

Also, some studies investigated the impact of shared AVs on 

parking behavior [50-52]. AVs can drop passengers at their 

destinations and go to cheaper parking spots. Exploring the 

previous studies shows little literature on this type [8,53-54]. 

Exploring the effect share of AVs on the optimal number and 

location of parking facilities is still a gap in the literature. 

Hence, we divide the problem into two structure layouts 

(corridor and grid) and analyze the effect of AVs on the 

optimal location, number of required parking, and the social 

cost involved. 

2.3 Contribution of this paper 

Although previous papers study the parking location, the 

presented models follow a network-based integer approach 

and are computationally exhaustive. Moreover, most of 

them do not consider the effect of AVs on the optimal 

number and location of parking facilities (to the best of our 

knowledge). In this paper, we enter the share of AVs 

parameter into the equations to investigate the effect of AVs. 

Previous papers that consider AVs concentrate on corridors 

and neglect grid structure layout.  

Also, they focus on many-to-one demand patterns. We study 

corridor and grid structure networks and consider desired 

origin and destination distribution functions to generalize 

our research. CA is an alternative to facility location design, 

but its application in finding parking locations is limited in 

previous studies. This paper uses the CA approach to 

formulate the cost terms, consequently, the total cost term. 

This approach allows us to derive the service area for each 

parking facility which is rare in the parking location 

literature (to the best of our knowledge). We present 

heuristic algorithms for each system layout (corridor and 

grid) to compare the results of discrete solutions and CA 

findings. Hence, we can survey the precision and 

performance of the CA approach. 

2.4 Problem definition 

We assume that origin and destination are distributed 

independently. We consider two system layouts: (i) a 

corridor and (i) a grid network. We model the corridor in 

Section 3 and the grid network in Section 4. Table 1 

summarizes the nomenclatures of the paper.  In this paper, 

we consider three assumptions. We assume that demand is 

inelastic and insensitive to the cost of travel, passengers 

choose the nearest parking to park their vehicles, and we do 

not consider the capacity constraint. These assumptions are 

consistent with the CA literature. 

 

Table 1: Nomenclature. 

Parameters 

𝛾𝑑
𝐶 Marginal cost of distance passed by CVs ($/𝑘𝑚) 𝛾𝑜

𝐴 Marginal cost of distance passed by AVs between 
the origin and the destination ($/km) 

𝛾𝑤
𝐶 Marginal cost of distance passed by CVs ($/𝑘𝑚) 𝛾𝑓

𝐴 Marginal cost of distance passed by AVs between 
the destination and the parking facility ($/km) 

𝑂(𝑋) Origin distribution function (𝑝𝑎𝑠𝑠/𝑘𝑚2) 𝐷(𝑋) Destination distribution function (𝑝𝑎𝑠𝑠/𝑘𝑚2) 

𝐿 Length of corridor and city dimension (𝑘𝑚) �̅� Total demand (𝑝𝑎𝑠𝑠/ℎ𝑟) 

𝛽 Share of AVs of total demand 𝑃𝑖 Parking facility 𝑖 

Variables 

𝐶𝑑
𝐶 Total distance passed by CVs (𝑘𝑚) 𝐶𝑜

𝐴 Total distance passed by AVs between the origin and 

the destination (𝑘𝑚) 

𝐶𝑤
𝐶 Total distance walked by passengers (𝑘𝑚) 𝐶𝑓

𝐴 Total distance passed by AVs between the 

destination and the parking facility (𝑘𝑚) 

𝐹𝑖𝑛 Infrastructure and operating cost of parking facilities 

($/ℎ𝑟) 
𝑆𝑖 Region served by parking facility 𝑖 (𝑘𝑚2) 

𝑇𝐶 Total cost of the system ($/ℎ𝑟) 𝑁 Number of parking facilities 

 

3. Corridor 

3.1 Modeling 

We assume that origins are distributed w.r.t. the origin 

function 𝑂(𝑥) and destinations are distributed w.r.t. the 

destination function (𝐷(𝑥), where 𝑥 is measured from the 

leftmost corner of the corridor. We assume that the origins 

and destinations are independent. A proportion 𝛽 of the 

travelers use AVs, and the remaining 1 − 𝛽 drive CVs (we 

define 𝛽 as the proportion of AVs to the total demand). 

There are 𝑁 parking facilities placed at locations 𝑋 ∈
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{𝑥1, 𝑥2, … , 𝑥𝑁}. We assume that travelers choose the nearest 

parking to their destinations. For better exposition, we 

present the mid-point of two parking facilities 𝑖 and 𝑖 + 1 as: 

𝑥𝑖
′ =

𝑥𝑖 + 𝑥𝑖+1
2

             ∀𝑖 = 1,2,… ,𝑁 − 1,    𝑥0
′

= 0,     𝑥𝑁
′ = 𝐿. 

   (1) 

The influence area of each parking facility is the area that its 

demand is attracted by that parking facility. Using (1), the 

influence area of parking 𝑖 is 𝑆𝑖 = [𝑥𝑖−1
′ , 𝑥𝑖

′). 

The travel of CVs consists of two parts: (i) driving between 

origin and a parking facility that is the nearest to the 

destination, and (ii) walking from the parking facility to the 

destination (these two parts of travel are demonstrated in 

Figure 1a).  

The mean distance that passengers drive to access parking 𝑖 

is: 

𝐶𝑑,𝑖
𝐶 =

∫ |𝑥 − 𝑥𝑖|𝑂(𝑥)𝑑𝑥
𝑥𝑖
′

𝑥𝑖−1
′

�̅�
= 𝐺(𝑥𝑖), 

(2) 

which depends on the origin-distribution functions and the 

location of parking facilities. Hence, the total distance 

traversed by CVs can be written as: 

𝐶𝑑
𝐶 = (1 − 𝛽)∑(𝐺(𝑥𝑖)∫ 𝐷(𝑥)𝑑𝑥

𝑥𝑖
′

𝑥𝑖−1
′

𝑁

𝑖=1

). (3) 

Passengers that use CVs walk from parking to their 

destination. Hence, the total distance walked from the 

nearest parking to their destination is: 

𝐶𝑤
𝐶 = (1 − 𝛽)∑(∫ |𝑥 − 𝑥𝑖|𝐷(𝑥)𝑑𝑥

𝑥𝑖
′

𝑥𝑖−1
′

)

𝑁

𝑖=1

. (4) 

AV passengers’ path consists of two parts: (i) they drive 

from their origins to their destinations, and (ii) AVs drive 

independently from the destination to the nearest parking 

(Figure 1b). We note that the distance from the origin to the 

destination that passed by a desired AV is not depended to 

the number and the location of parking facilities. Hence, we 

calculate the total distance passed by occupant AVs as: 

𝐶𝑜
𝐴 =

𝛽∫ |𝑥 − 𝑥𝑖|𝐷(𝑥)𝑂(𝑥)𝑑𝑥
𝐿

0

�̅�
= 𝛽�̅�. (5) 

 
Fig. 1: a. CV trip pattern, and b. AV trip pattern in a corridor.

Note that the integral of the origin function or the destination 

function over the corridor is equal to the total demand. 

Hence, we input 1/D in (5) to avoid double demand 

considering. Occupant-free AVs drive from their 

passenger’s destination to the nearest parking. The total 

distance passed by occupant-free AVs is: 

𝐶𝑓
𝐴 = 𝛽∑(∫ |𝑥 − 𝑥𝑖|𝐷(𝑥)𝑑𝑥

𝑥𝑖
′

𝑥𝑖−1
′

)

𝑁

𝑖=1

. (6) 

In addition to transportation costs, we should find the 

parking facilities infrastructure and operating costs. 

Therefore, we present the fixed and operating costs of 

parking facilities as: 

𝐹𝑖𝑛 =∑(𝑓(𝑥𝑖) + 𝑎(𝑥𝑖)∫ 𝐷(𝑥)𝑑𝑥
𝑥𝑖
′

𝑥𝑖−1
′

𝑁

𝑖=1

+ 𝑏(𝑥𝑖)(∫ 𝐷(𝑥)𝑑𝑥
𝑥𝑖
′

𝑥𝑖−1
′

)𝛼). 

(7) 

Equation (7) is a relevant function in previous studies [55]. 

The first term indicates that the facility cost is related only 

to the location of the parking facility, and the second and 

third terms depend on the location and the attracted demand. 

The next step is to present the total cost function. We 

calculate the total cost as: 

𝑇𝐶 = 𝐹𝑖𝑛 + 𝛾𝑓
𝐴𝐶𝑓

𝐴 + 𝛾𝑜
𝐴𝐶𝑜

𝐴 + 𝛾𝑤
𝐶𝐶𝑤

𝐶

+ 𝛾𝑑
𝐶𝐶𝑑

𝐶 . 
(8) 

 

CV path 
Walking path 

Occupant AV path 

Occupant-free AV path 

a

b

Boundary of corridor

Parking facility

Origin

Destination
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Note that 𝛾𝑓
𝐴, 𝛾𝑜

𝐴, 𝛾𝑤
𝐶 , and 𝛾𝑑

𝐶  are the marginal cost of 

distance passed by occupant-free AVs, occupant AVs, CVs, 

and passengers, respectively. We aim to find the location 

and the number of parking facilities as decision variables. 

We present the below heuristic algorithm to find the near-

optimal solutions of (8) as: 

• Step 1. We estimate the number of required parking 

facilities (𝑁). 

• Step 2. We generate a primary solution by 

distributing 𝑁 facilities among the corridor and determining 

the service area of each facility using 𝑆𝑖 = [𝑥𝑖−1
′ , 𝑥𝑖

′). 

• Step 3. We use meta-heuristic algorithms such as 

genetic or particle swarm optimization to find the optimal 

location of facilities by minimizing the total cost. 

• Step 4. We repeat the process (Steps 1-3) for a set 

of number of locations. 

• Step 5. We find the optimal location and the 

optimal number of parking facilities with respect to the total 

cost. 

The presented algorithm is difficult to solve because we 

have no idea about the number of required facilities. Hence, 

we have to try different values for the number of parking 

facilities. Moreover, we cannot derive closed-form 

solutions. For example, suppose we want to investigate the 

impact of the share of AVs. In that case, we have to 

implement the presented algorithm for different values of 𝛽, 

leading to a time-consuming procedure. So, we use the CA 

approach to eliminate the complexities of the problem and 

present significant insights in Subsection 3.2. 

3.2.  CA approach-based modeling of corridor 

The model presented in the previous subsection is non-

convex and non-linear; hence, it is difficult to solve. Using 

CA, we rewrite the previous equations. The total distance 

passed by CVs can be rewritten as: 

𝐶𝑑
𝑐 = (1 −  β)∑𝐺(𝑥𝑖)𝑆𝑖𝐷(𝑥𝑖)

𝑁

𝑖=1

= (1 −  β)∑𝐺(𝑥𝑖)𝑆𝑖𝐷(𝑥𝑖) ∫
1

𝑆𝑖
𝑑𝑥

𝒮𝑖

𝑁

𝑖=1

= (1 −  β)∑∫
𝐺(𝑥𝑖)𝑆𝑖𝐷(𝑥𝑖)

𝑆𝑖
𝑑𝑥

𝒮𝑖𝑖

= (1 −  β)∫
𝐺(𝑥)𝑆𝑠(𝑥)𝐷(𝑥)

𝑆𝑠(𝑥)
𝑑𝑥

𝐿

0

= (1 −  β)∫𝐺(𝑥)𝐷(𝑥)𝑑𝑥

𝐿

0

, 

(9) 

where 𝑆𝑠(𝑥) = 𝑆𝑖 , ∀𝑥 ∈ 𝑆𝑖 and 𝑆𝑠 is a step function. The 

above approach is relevant in the CA methodology and has 

been used in previous studies [26]. We suppose that the 

parameters vary slowly. Although, as pointed out by 

Daganzo [14], the CA approach gives acceptable results if 

large differences occur in close neighborhoods. Similar to 

Ansari et al. [26], we rewrite the total distance walked by 

passengers from the parking facility to the destination as: 

𝐶𝑤
𝐶 = (1 −  β)∫

𝑆𝑠(𝑥)𝐷(𝑥)

4
𝑑𝑥

𝐿

0

= (1

−  β)∫
𝑆(𝑥)𝐷(𝑥)

4
𝑑𝑥

𝐿

0

. 

(10) 

It has complexity yet to solve the objective function if we 

use 𝑆𝑠(𝑥). Hence, we replace the step function with the 

continuous function 𝑆(𝑥). Similarly, we rewrite the total 

distance passed by occupant-free AVs as: 

𝐶𝑓
𝐴 = β∫

𝑆(𝑥)𝐷(𝑥)

4
𝑑𝑥

𝐿

0

. (11) 

Using the same approach, (7) is replaced by:

 

𝐹𝑖𝑛 = ∫
𝑓(𝑥) + 𝑎(𝑥)𝑆(𝑥)𝐷(𝑥) + 𝑏(𝑥)(𝑆(𝑥)𝐷(𝑥))

2

𝑆(𝑥)
𝑑𝑥

𝐿

0

. (12) 

Placing (5) and (9)-(12) in (8), we get: 

𝑇𝐶 = 𝛾𝑜
𝐴β�̅� +∫

𝑓(𝑥) + 𝑎(𝑥)𝑆(𝑥)𝐷(𝑥) + 𝑏(𝑥)(𝑆(𝑥)𝐷(𝑥))
2

𝑆(𝑥)
𝑑𝑥

𝐿

0

+ (𝛾𝑓
𝐴β + 𝛾𝑤

𝐶(1 − 𝛽))∫
𝑆(𝑥)𝐷(𝑥)

4
𝑑𝑥

𝐿

0

+ 𝛾𝑑
𝐶(1 − 𝛽)∫𝐺(𝑥)𝐷(𝑥)𝑑𝑥

𝐿

0

. 

(13) 

 

The first term in (13) represents the total distance passed by 

occupant AVs and is independent of the number and the 

location of parking facilities. Hence, we remove it from the 

optimization process. Nevertheless, other terms are affected 

by the number and the location of facilities. We know that 

the integral minimizing is equal to the integrand minimizing 

at all points. So, we minimize the following equation instead 

of (13):
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𝑇𝐶′ =
𝑓(𝑥) + 𝑎(𝑥)𝑆(𝑥)𝐷(𝑥) + 𝑏(𝑥)(𝑆(𝑥)𝐷(𝑥))

2

𝑆(𝑥)
+
(𝛾𝑓

𝐴β + 𝛾𝑤
𝐶(1 − 𝛽))𝑆(𝑥)𝐷(𝑥)

4
+ 𝛾𝑑

𝐶(1 − 𝛽)𝐺(𝑥)𝐷(𝑥). (14) 

Multiplying the first derivative of (14) by 𝑆2, we get

𝑆2
𝜕𝑇𝐶′

𝜕𝑆
=

{
 
 

 
 
−𝑓 − (1 − 𝛼)𝑏𝑑𝛼𝑆𝛼 +

(𝛾𝑓
𝐴β + 𝛾𝑤

𝐶(1 − 𝛽))𝐷𝑆2

4
= 0   𝑓𝑜𝑟 0 < 𝛼 < 1

−𝑓 +
(𝛾𝑓

𝐴β + 𝛾𝑤
𝐶(1 − 𝛽))𝐷𝑆2

4
= 0   𝑓𝑜𝑟 𝛼 = 1

. (15) 

We omit (𝑥) in all variables to improve clarity. According 

to (15), we find that the optimal continuous service region 

function is related to the parameter 𝛼. For example, for 

𝛼 = 1, 𝑆∗ can be written as: 

𝑆∗ = √
4𝑓

(𝛾𝑓
𝐴β + 𝛾𝑤

𝐶(1 − 𝛽))𝐷
. (16) 

Proposition 1. The infrastructure cost increases and the 

demand decreases the optimal continuous service area 

function. 

According to Proposition 1, the infrastructure cost increases 

the optimal continuous service area function. If the 

infrastructure cost increases, building so many parking 

facilities is not beneficial, and we have to decrease the 

number of parking facilities. Therefore, the service region 

designated for each facility increases. If the demand 

increases, the demand designated to each parking facility 

increases; consequently, (7) increases. Hence, we need to 

increase the number of facilities (consequently decreasing 

the facilities’ service region) to reduce the number of 

passengers dedicated to each parking facility. 

Similarly, we calculate the optimal number of parking 

facilities as: 

𝑁∗ = ∫
1

𝑆∗
𝑑𝑥

𝐿

0

. (17) 

Proposition 2. The share of AVs affects the optimal number 

of parking facilities w.r.t. 𝛾𝑓
𝐴 and 𝛾𝑤

𝐶 . 

We find that the share of AVs affects the optimal continuous 

service region function, consequently, the optimal number 

of parking facilities. It is a logical assumption that the 

marginal cost of distance walked by passengers is higher 

than the marginal cost of distance passed by AVs between 

the destination and the parking facility. Hence, we can 

conclude that the share of AVs decreases the optimal 

number of parking facilities. Using 𝑆𝑖 ∫ 𝐷(𝑥)𝑑𝑥
𝒮𝑖

, we can 

calculate the assigned demand for the parking facility placed 

at 𝑥𝑖 if we follow the discrete approach. Following the CA 

approach, we calculate the optimal continuous assigned 

demand function as: 

𝑃∗ = 𝑆∗𝐷 = √
4𝑓𝐷

(𝛾𝑓
𝐴β + 𝛾𝑤

𝐶(1 − 𝛽))
. (18) 

Proposition 3. The infrastructure cost and the total demand 

increase the optimal continuous assigned demand function. 

The infrastructure cost increases (decreases) the optimal 

service region (the optimal number of parking facilities). 

Also, the demand decreases the optimal service region. 

Consequently, it causes an increase in the optimal number of 

parking facilities. In this section, we formulate the one-

dimensional space. The following section models a city with 

a grid structure (two-dimensional space). 

4. Grid Network 

4.1 Modeling 

We have two distance metrics in a two-dimensional space: 

(i) Euclidean and (ii) Manhattan. We consider a city with a 

grid structure (𝐿 ∗ 𝐿) and calculate the distance between two 

random points according to the Manhattan metric. As 

explained in the previous section, the trip pattern is different 

for CVs and AVs. Figure 2a shows the CVs trip pattern that 

consists of 𝐶𝑑
𝐶 and 𝐶𝑤

𝐶 . Figure 2b shows the AVs trip pattern 

that consists of 𝐶𝑜
𝐴 and 𝐶𝑓

𝐴. Similar to the previous section, 

we assume that there are 𝑁 parking facilities and 𝑂(𝑥, 𝑦) and 

𝐷(𝑥, 𝑦) are the origin and destination distribution functions, 

respectively. If (𝑥𝑖 , 𝑦𝑖) is the location coordinate of the 

parking facility 𝑖, we can write the average distance passed 

by CVs from the origin to parking facility 𝑖 as: 

𝐶𝑑,𝑖
𝐶 =

∫ ||𝑥 − 𝑥𝑖||𝑂𝑥(𝑥)𝑑𝑥
𝐿

0

�̅�
+
∫ ||𝑦 − 𝑦𝑖||𝑂𝑦(𝑦)𝑑𝑦
𝐿

0

�̅�
= 𝐺(𝑥𝑖 , 𝑦𝑖). 

(19) 
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Note that 𝑂𝑥(𝑥) and 𝑂𝑦(𝑦) are the origin distribution 

functions along 𝑥 and 𝑦 axes, respectively. Equation (19) is 

dependent only on the location of the parking facility and the 

origin function. For example, if origins are distributed 

uniformly over the city, we can rewrite (19) as: 

𝐶𝑑,𝑖
𝐶 =

𝑥𝑖
2 + (𝐿 − 𝑥𝑖)

2 + 𝑦𝑖
2 + (𝐿 − 𝑦𝑖)

2

2𝐿
. (20) 

The total distance passed by CVs can be written as: 

𝐶𝑑
𝐶 = (1 − 𝛽)∑(𝐺(𝑥𝑖 , 𝑦𝑖)∫ 𝐷(𝑋)𝑑𝑋

𝒮𝑖

)

𝑁

𝑖=1

. (21) 

Note that 𝑆𝑖 is the service area of parking facility 𝑖 and is 

defined as:

 

𝑆𝑖 = {𝑋|   ||𝑋 − 𝑋𝑖|| < ||𝑋 − 𝑋𝑗||}         𝑓𝑜𝑟 𝑖 ≠ 𝑗,   𝑗 ∈ 𝑁. (22) 

The next step is to define the total distance walked by 

passengers from parking facilities to destinations as (23). 

The total distance passed by AVs from origins to 

destinations is calculated as (24).

𝐶𝑤
𝐶 = (1 − 𝛽)∑∫ ||𝑋 − 𝑋𝑖||𝐷(𝑋)𝑑𝑋

𝒮𝑖

𝑁

𝑖=1

. (23) 

 

𝐶𝑜
𝐴 =

𝛽∫ ||𝑥 − 𝑥𝑖||𝑂𝑥(𝑋)𝐷𝑥(𝑋)𝑑𝑋 + ∫ ||𝑦 − 𝑦𝑖||𝑂𝑦(𝑌)𝐷𝑦(𝑌)𝑑𝑌𝒮𝒮

�̅�
= 𝛽�̅�. (24) 

We recall that (24) seems complicated, but we can derive it 

easily if we know the origin and destination distribution 

functions. For example, if the origins and destinations 

distribution functions are uniformly distributed among the 

city, (24) is derived as: 

𝐶𝑜
𝐴 = 2𝛽�̅�𝐿/3. (25) 

Similarly, the total distance passed by occupant-free AVs is: 

𝐶𝑓
𝐴 = 𝛽∑∫ ||𝑋 − 𝑋𝑖||𝐷(𝑋)𝑑𝑋

𝒮𝑖

𝑁

𝑖=1

. (26) 

We can find the infrastructure and the total costs by updating 

(7) and (8) for two-dimensional space. However, finding the 

optimal number and the location of parking facilities is 

difficult. The biggest challenge is how to find the service 

areas of facilities. Some studies use the Voronoi diagram to 

calculate the service region and, consequently, the service 

area of facilities [37]. We replace the city (𝐿 ∗ 𝐿) with a 

mesh grid (𝑚 ∗𝑚). Each node in the mesh grid is equivalent 

to a point in the city. To solve the model, we present the 

following heuristic algorithm: 

• Step 1. We divide each city dimension into 𝑚 

segments, and we have a mesh grid (𝑚 ∗𝑚) that covers the 

city (𝐿 ∗ 𝐿). 

 

Fig. 1: a. CV trip pattern, and b. AV trip pattern in a grid network.

• Step 2. We estimate the number of required parking 

facilities (𝑁) and generate a primary solution by distributing 

𝑁 facilities throughout the city. 

• Step 3. We assign each node in the mesh grid to the 

nearest parking facility. Hence, we can find each service 

area. 

Parking facility 

Origin  

Destination  

CV path 

Walking path 

Occupant AV path 

Occupant-free AV path 

a b
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• Step 4. We use meta-heuristic algorithms such as 

genetic or particle swarm optimization to find the optimal 

location of facilities by minimizing the total cost. 

• Step 5. We repeat the process (Steps 2-4) for a set 

of number of locations. 

• Step 6. We find the optimal number and the 

location of parking facilities. 

The presented algorithm is complicated and challenging to 

solve. Because we have no idea about the number of required 

facilities, we have to try different values for the number of 

parking facilities. Similar to the previous section, we 

reformulate the problem using CA in the following 

subsection. 

4.2.  CA approach-based modeling of grid network 
 

In this subsection, we eliminate the complexity of the 

problem using CA. We reformulate (21) as: 

𝐶𝑑
𝐶 = (1 − 𝛽)∫𝐺(𝑥, 𝑦)𝐷(𝑥, 𝑦)𝑑𝑥𝑑𝑦

𝒮

. (27) 

Similarly, (23) is rewritten as: 

𝐶𝑤
𝐶 = (1 − 𝛽)∫𝐾𝐷(𝑥, 𝑦)√𝑆(𝑥, 𝑦)𝑑𝑥𝑑𝑦

𝒮

. (28) 

Note that 𝐾 is a constant that depends on the distance metric 

and the shape of the service region. Previous studies suggest 

different values for 𝐾. In this paper, 𝐾 is 0.454 [26]. 

Similarly, the total distance passed by occupant-free AVs is: 

𝐶𝑓
𝐴 = 𝛽∫𝐾𝐷(𝑥, 𝑦)√𝑆(𝑥, 𝑦)𝑑𝑥𝑑𝑦

𝒮

. (29) 

The infrastructure and total costs can be reformulated 

similarly to Subsection 3.2. Using the same approach, we 

find the optimal continuous service area function for a two-

dimensional space as (30). Note that 𝛼 affects the continuous 

service region function as shown in (30). For example, for 

𝛼 = 1 and 𝛼 = 3/4, 𝑆∗ can be written as (31).

𝑆2
𝜕𝑇𝐶′

𝜕𝑆
=

{
 
 

 
 
−𝑓 − (1 − 𝛼)𝑏𝑑𝛼𝑆𝛼 +

(𝛾𝑓
𝐴β + 𝛾𝑤

𝐶(1 − 𝛽))𝐷𝐾

2
𝑆3/2 = 0   𝑓𝑜𝑟 0 < 𝛼 < 1

−𝑓 +
(𝛾𝑓

𝐴β + 𝛾𝑤
𝐶(1 − 𝛽))𝐷𝐾

2
𝑆3/2 = 0   𝑓𝑜𝑟 𝛼 = 1

. (30) 

 

𝑆∗ =

{
 
 

 
 
(
𝜈

𝜙
)

4

3
(1 + √1 +

2𝑓𝜙

𝜐
)4/3, 𝜐 =

𝑏𝑑3/4

4
, 𝜙 = (𝛾𝑓

𝐴β + 𝛾𝑤
𝐶(1 − 𝛽))𝐷𝐾, 𝑓𝑜𝑟 𝛼 = 3/4 

(
2𝑓

(𝛾𝑓
𝐴β+𝛾𝑤

𝐶(1−𝛽))𝐷𝐾
)2/3,     𝑓𝑜𝑟 𝛼 = 1

.   (31) 

Proposition 4. The origin distribution function does not 

affect the optimal continuous service region function. 

According to (21) and (27), 𝐺(𝑥, 𝑦) represents the origin 

distribution function, but the CA approach removes 𝐺(𝑥, 𝑦) 

from (30). Hence, the origin distribution function cannot 

affect the continuous service area function.  

5. Numeric Examples 

5.1 Corridor 

This section explores the presented equations and findings 

by numeric examples. Input parameters are given in Table 2. 

The length of the corridor and the total demand are 

20 𝑘𝑚 and 500 𝑝𝑎𝑠𝑠/ℎ𝑟, respectively. Input data show that 

the walking distance passed by passengers is more important 

than the distance passed by CVs and AVs, which is logical. 

Figure 3a shows that the service area function decreases 

along the axis (𝛽 = 0.5). The destination distribution 

function increases along the axis. Hence, the service region 

of parking facilities should decrease. Figure 3b shows that 

the assigned demand for parking facilities increases along 

the corridor. For example, if a parking facility is located at 

𝑥 = 20 𝑚, its capacity should be at least 55 𝑝𝑎𝑠𝑠/ℎ𝑟 to 

serve the assigned demand. However, while the service area 

function decreases along the x-axis, the assigned demand 

function increases. The result is because of the destination 

distribution function that increases along the axis. Hence, 

𝑆(𝑥)𝐷(𝑥) increases. 

Table 2: Input parameters.  

𝛽 [0,1] 𝛾𝑑
𝐶  2 ($/𝑘𝑚) 

𝐿 20 𝑘𝑚  𝛾𝑤
𝐶  5 ($/𝑘𝑚) 

𝐷(𝑥) 100/𝐿 + 800𝑥/𝐿2(𝑝𝑎𝑠𝑠

/ℎ𝑟) 

𝛾𝑜
𝐴 2 ($/𝑘𝑚) 

𝑓(𝑥) 100 ($/ℎ𝑟) 𝛾𝑓
𝐴 1 ($/𝑘𝑚) 

 

In Figure 4a, the results show that the share of AVs increases 

the service area function. The input data show that CVs’ 

parameters are greater than AVs’ parameters and that β 

decreases the effects of CVs’ parameters; hence, the results 

are acceptable. As the service area increases, the region 

served by a random parking facility increases, so we need 
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fewer parking facilities to cover the corridor. Figure 4b 

confirms the results. We note that the results derived from 

figures can be changed if we vary the input parameters.

 
Fig. 3: a. Service area function, and b. Assigned demand function in the corridor layout. 

The next step is to evaluate the effect of 𝛽 on the total cost. 

Fig. 5a shows that 𝛽 decreases the total cost.  

Hence, we can conclude that increase in the share of AVs is 

a good option for society. We compare the CA and the 

discrete approaches for 𝛽 in Figure 5b. Figure 5b shows that 

the service areas assigned to parking facilities by the CA 

method are approximately the same as those assigned by the 

discrete approach. We observe an average 0.2% difference 

between the calculated service area by the CA approach and 

the calculated service area by the discrete approach, which 

is negligible. This result highlights the performance of the 

CA approach because we can derive the optimal results in a 

short time and with acceptable accuracy.

 
Fig.4: Effect of 𝛽 on a. Area function, and b. Number of parking facilities in the corridor layout. 

 
Fig. 5: a. Effect of 𝛽 on the total cost, and b. Comparison of the results of CA and discrete approaches in the corridor layout.  
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5.2  Grid network 

In this subsection, we study a grid city (10 ∗ 10 𝑘𝑚). We 

use input data but define the destination distribution function 

as 𝐷/𝐿2 and the infrastructure and operating cost as 50 +

30(𝑥 + 𝑦)/(2𝐿). Figure 6a shows that the service area 

function increases along the axes. Equation (31) indicates 

that the service area behaves like the infrastructure and 

operating cost. Hence, the results of Figure 6a are 

reasonable. Also, the assigned demand function behaves like 

the service area and the infrastructure and operating cost (as 

shown in Figure 6b). 

We now determine the impact of 𝛽 on the service area and 

the number of parking facilities. Figure 7a shows that 𝛽 

increases the service area function. This result indicates that 

𝛽 decreases the number of required parking facilities (as 

shown in Figure 7b). 

The numeric example proves that AVs decrease the total 

cost (shown in Figure 8a). For 𝛽 = 1, we solve the problem 

using the discrete approach. Figure 8b shows the optimal 

location of parking facilities and their service regions. We 

find an averagely 6% difference between the calculated 

service area by the CA approach and the calculated service 

area by the discrete approach, which is negligible. For 𝛽 =

1 and 𝑁 = 11, the total cost of the discrete approach is 

15540 ($/ℎ𝑟), and the total cost of the CA approach is 15478 

($/ℎ𝑟). Therefore, there is an average 0.4% difference 

between the calculated total cost derived from the CA 

approach and that derived from the discrete approach. This 

result highlights the power and the performance of the CA 

approach.

 

Fig. 6: a. Service area function, and b. Assigned demand function in the grid city layout. 

 

 
Fig. 7: Effect of β on a. Service area function, and b. Assigned demand function in the grid city layout. 

 
Fig. 8: Effect of 𝛽 on total cost, and b. Optimal location of parking facilities in the grid city layout. 
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6. Conclusion 

The present study considers the presence of AVs and AVs 

simultaneously and finds the optimal location and the 

optimal number of parking facilities. We consider two 

system layouts: (i) a corridor and (ii) a grid city. We 

calculate the distance between points according to the 

Manhattan metric in the grid city. To address the problem, 

we present the general form of the problem and then use the 

CA approach to investigate the problem. 

To generalize the defined problem, we define origin and 

destination distribution functions independently. At first, 

equations are formulated, and a heuristic algorithm is 

presented for the corridor and the grid city. Then, we replace 

the cost terms using CA to derive closed-form solutions. 

The numeric examples show that the origin distribution 

function does not affect the optimal service area. However, 

the destination distribution and the infrastructure and 

operating cost functions affect the optimal service area. The 

AV ratio decreases the total cost and the required parking 

facilities. Moreover, we find the problem’s solution using 

the presented heuristic algorithm and show that the CA 

approach derives the total cost and the service area of 

facilities as close as possible to the results of the discrete 

approach. This result highlights the power and the 

performance of CA. 

We present some recommendations for future works. This 

paper investigated a corridor and a grid city. Future research 

is recommended to study the parking facilities location 

problem in a ring-radial city. This study neglects the cruising 

for parking and on-street parking. Other studies can enter 

these patterns into the equations to achieve a more realistic 

analysis. 
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