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Abstract: 

The spread of different material processing technologies has led to novel methods developed 

for reinforcing structural members. One of these approaches is to add carbon nanotubes (CNTs) 

with different distributions through the matrix phase of composite materials to improve their 

properties. Due to their superior properties such as lightweight and high values of elastic 

modulus, elastic strain, and failure strain, CNTs can be used to reinforce structures and 

elements. The present paper aims to investigate the effect of adding CNTs as reinforcement of 

matrix on the buckling capacity of columns by applying the meshless local Petrov-Galerkin 

(MLPG) method for buckling analysis. Since the MLPG method uses some scattered nodes 

through the domain and boundaries for discretization (rather than the meshing), the functionally 

graded (FG) variation of material properties can be conveniently modeled under the influence 

of reinforcing elements (CNTs). Four types of volume fraction exponent functions are 

considered for modeling the FG variation of the CNT volume fraction to examine the effect of 

CNTs distribution on the buckling capacity of the column and determine the most optimal 

distribution of CNTs. Effective mechanical properties of the CNT-reinforced column are 

estimated based on the extended rule of mixture. Results show that reinforcing the polymer 

matrix with a low volume fraction of CNTs with appropriate distribution can significantly 

increase its buckling capacity. Using the obtained results, one can determine the best 

distribution pattern of CNTs in the longitudinal direction of the column at various boundary 

conditions.

 

1. Introduction 

The stability of columns is a critical issue in the engineering 

design of structures. The stability of prismatic columns 

made of homogeneous materials can be investigated 

analytically [1,2]. However, for the optimal design of 

buildings and bridges, different approaches such as non-

prismatic columns (change in the column cross-section) and 

the reinforcement of columns in weak points (change in the 

material properties) have been suggested to increase the 

load-bearing capacity of columns [3]. In both methods, the 

flexural stiffness varies through the column length, and 

except for some particular cases, it is extremely difficult to 

provide an analytical approach for this type of column [4,5].  
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In order to determine the buckling capacity of columns with 

variable flexural stiffness, various techniques such as finite-

difference [6], polynomial series [7], boundary element [8], 

integral-based relationships [9,10], finite element [11,12], 

and meshless [13,14] methods have been presented. 

Functionally graded materials are new types of materials 

with favorable resistance that can manage the distribution of 

material properties [15]. Recently, functionally graded 

materials (FGMs) have been widely used in engineering 

applications and industries. There are some papers on 

stability analysis of FG members. For instance, an improved 

approach based on the power series expansions was 

proposed by Soltani and Asgarian [16] to exactly evaluate 

the static and buckling stiffness matrices for the linear 

stability analysis of axially functionally graded (AFG) 

Timoshenko beams with variable cross-section and fixed-

free boundary condition. Soltani et al. [17] developed the 

finite difference method for buckling analysis of tapered 

Timoshenko beam made of axially functionally graded 
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material. In another work Soltani [18] developed an efficient 

finite element model with two degrees of freedom per node 

for buckling analysis of AFG tapered Timoshenko beams 

resting on Winkler elastic foundation. Soltani and Asgarian 

[19] studied the lateral-torsional stability of axially 

functionally graded beams with tapered bi-symmetric I-

section subjected to various boundary conditions. The 

lateral-torsional buckling behavior of FG non-local beams 

with a tapered I-section and the flexural-torsional stability of 

functionally graded (FG) nonlocal thin-walled beam-

columns with a tapered I-section were investigated by 

Soltani et al. [20, 21]. 

In the past few years, polymer matrices reinforced by 

nanomaterials because of their excellent mechanical and 

thermal properties, have attracted many researchers’ 

attention [22]. Among nano-reinforcements materials, 

carbon-type ones like graphene [23] and CNTs [24] have 

been the best contribution in improving mechanical and 

thermal properties. An overview of recently published 

papers shows that the CNTs have been successfully utilized 

as the reinforcement of different matrices [25,26]. For 

instance, Zhang et al. [27] studied the effect of column 

reinforcement by CNTs on the force-displacement curve in 

an experimental study. Han and Elliott [28] estimated the 

elastic and shear moduli of CNT-reinforced composite 

materials based on the theorem of minimum strain-energy 

and compared the results with those obtained from the rule 

of mixture. Yas and Samadi [29] worked on the buckling 

analysis of the CNT reinforced Timoshenko beams resting 

on an elastic foundation. The free vibration analysis of thick 

composite plates reinforced by FG-CNTs along the plate 

thickness was studied by Lei et al. [30]. Li et al. [31] 

reviewed studies conducted on the effect of reinforcing 

cementitious composites by CNTs on the elastic modulus, 

porosity, fracture, and other mechanical properties of 

cement-based composite materials. Mirzaei and Kiani [32] 

analyzed the free vibration of cylindrical panels reinforced 

by CNTs. Arani and Kolahchi [33] studied the buckling 

behavior of embedded concrete columns armed with carbon 

nanotubes based on the energy method, and Hamilton’s 

principle. Different effects of the distribution of CNTs along 

the thickness on the vibration of double-curved panels and 

circular shells were studied by Wang et al. [34]. Karami et 

al. [35] studied the buckling behavior of composite curved 

beams reinforced by functionally graded CNTs using the 

non-local theory that considers dependency between 

structural dimensions in small scales. Civalek and Jalaei [36] 

studied the shear buckling behavior of FG-CNTR skew 

plates with opposing boundary conditions. Liew et al. [37] 

conducted a brief review on studies on the composite 

materials reinforced by CNTs of different distributions.  

In the general finite element method (FEM), the mechanical 

properties of each element are constant. Therefore, there are 

some drawbacks in applying this method to analyze FG 

nanomaterials-reinforced polymer matrices, in which the 

material properties gradually varied in a direction. Thus, in 

the FEM, the variation of properties must be applied 

manually by the user, which is a time-consuming process. 

Hence, several meshless methods have been proposed in 

recent years to analyze the FGM structures. Ghayoumizadeh 

et al. [38] investigated the wave propagation of displacement 

and stresses through the CNT-reinforced composite 

materials using the meshless method. Ghoohestani et al. [39] 

studied the dynamic behavior of structures made of CNT-

reinforced multi-layer composite materials under impact 

loading. Rad et al. [40] evaluated the geometrically 

nonlinear dynamic behavior of hollow cylindrical structures 

made of FGM with variable properties along the radius 

direction using the MLPG method. Hosseini and Zhang [41] 

utilized the meshless finite difference method to analyze the 

time history of FG graphene platelet-reinforced (FG-

GPLTR) cylindrical structures with variable properties in 

the radial direction. They also examined the thermo-elastic 

behavior of FG-GPLTR multi-layer structures using the 

meshless method in another study [42]. All of the above-

mentioned articles are in the field of functionally graded and 

multilayer GPLs and CNTs reinforced plates and shells in 

which the nanoparticle content gradually varies in the 

thickness direction. Since continuous changes of material 

properties in thickness direction of plates and shells cause a 

change in the flexural rigidity parameter, the finite element 

method can be easily applied for analysis of these problems. 

In the present study, for the first time, the MLPG method is 

developed for the buckling analysis of axially functionally 

graded (AFG) CNTs-reinforced columns in which the CNT 

volume fraction gradually changes in the longitudinal 

direction of column (problem domain). As previously 

described, applying of the MLPG method for analysis of 

AFG reinforced columns is a less time-consuming method 

compared with the finite element method. Analytical results 

show that the critical buckling load of the column may be 

enhanced significantly by strengthening the matrix with the 

CNTs. Therefore, it is recommended to consider these 

materials for special structural members that require 

lightweight and optimal design. Moreover, numerical results 

demonstrate that the buckling capacity of CNTR composite 

columns is highly dependent on the CNT distribution 

pattern. 

 

2. Effective mechanical properties  

A column with 4m length is considered, as shown in Figure 

1. Four different nonlinear functions are considered in this 

paper to model the CNTs distribution through the length of 

the column. The volume fraction of the CNTs (VCNT) for 

various distribution patterns are defined as follows [43]. 
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


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




=
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







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L
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VxV m

CNTCNT

−
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2
2 *  (3) 

Type 4:  

( )
( )( )

L

xxL
VxV m

CNTCNT

−−
=

2
2 *  (4) 

where α is the volume fraction exponent, and other 

parameters are calculated by the following equations [43]: 

 

  

Type 1 Type 2 

  
Type 3 Type 4 

Fig. 1: Different patterns of CNTs distribution through the column length 
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where 𝑤𝐶𝑁𝑇 and 𝜌𝐶𝑁𝑇 are the weight fraction and density 

(mass per volume) of CNTs, and 𝜌𝑚 is the matrix density. 

For more simplicity, the extended rule of mixtures is 

employed to estimate the effective elastic modulus of 

CNTR column, which is expressed as follows [43]: 

(7) ( ) ( ) ( ) mmCNTCNT ExVExVxE += 1  

where 𝜂1 is the efficiency parameter, 𝐸𝐶𝑁𝑇 and 𝐸𝑚 are the 

elastic modulus of CNT and matrix, respectively, and 𝑉𝑚 

is the matrix volume fraction. The CNT distribution 

pattern along the columns length for all types of functions 

is shown in Figure 1. In this figure, the darker color 

represents more CNT contents. 

The following relationship is established between matrix 

and CNT volume fractions. 

(8) ( ) ( )xVxV CNTm −=1  

It worth mentioning that the single-walled carbon 

nanotubes (SWCNTs) are utilized as column 

reinforcements in the present study.  The properties of the 

matrix and CNTs are demonstrated in Table 1. In this table 

the matrix phase is considered as: poly{(m-

phenylenevinylene)-co-[(2,5-dioctoxy-p phenylene) 

vinylene]}, and geometry properties of SWCNT is  (L = 

9.26 nm, R = 0.68 nm, h = 0.067 nm) [44]. 

 

Table 1: Mechanical properties of matrix and CNT [44] 

Matrix CNT 

2GPamE =  TPa64.5=CNTE  

3m

kg
1150=m  

3m

kg
1400=CNT  

34.0=m  149.01=  

 
 

Figure 2 represents the variation of elastic modulus along 

the column length for all functions with a constant volume 

fraction exponent α = 0.5 and various values of 𝑉𝐶𝑁𝑇
∗ . 

Figure 3 illustrates the variation of elastic modulus along 

the column length for different values of volume fraction 

exponent. 

 

3. MLPG method for buckling analysis of the 

column  

Consider an FG-CNTR simply supported column with 

functionally graded elasticity modulus ‘E(x)’ and constant 

moment of inertia ‘I’ subjected to an axial load ‘P’. From 

the force and moment equilibrium of a differential element 

of the column we have: 

(9) ( ) 0M x PW Cx D− + + =   

where the values of C and D depend on the boundary 

conditions. The curvature of the beam (which can be 

considered as pseudo strain) is related to the moment 

x x 

x x 
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(pseudo stress) by ( )M x EIW = . Substituting this 

result into Equation (9) and then differentiating the 

obtained equation twice with respect to ‘x’, the governing 

fourth order differential equation of buckling for all 

boundary conditions can be obtained as follows: 

(10) ( )
4

4
0− =

d W
E x I PW

d x

  

where ‘W’ is the lateral displacement of the column. At 

each end of the column (x=0 and x=L) two boundary 

conditions should be defined. The boundary conditions are 

on deflections ‘W’, slope ‘θ=dW/dx’, moment 

‘M=EI(d2W/dx2)’, and shear force ‘V= -EI(d3W/dx3)’ . 

Instead of solving this differential equation, the weak form 

of Equation (10) is minimized over a local subdomain of 

each node ‘Ω’ [45]: 

(11) ( )
2 2

2 2

d d W
E x I - PW d 0

dx dx

  
  =    

  
   

Where ‘ψ’ is the weight function. By integration of parts 

twice, Equation (11) can be rewritten as follows: 

(12) 

( ) ( )

( )

( )
w

2 2 2

x2 2 2

2 2

x 2 2

w

d W d d d W
E x I d n E x I

dx dx dx dx

d W d d W
n E x I P d

dx dx dx

dW
W W 0

dx


 








    
+     

    

    
− −      

    

  
 + −  + −   =   

  




  

where αw
  and αθ are penalty factors, which are 

usually very large numbers to enforce the deflection and 

slope boundary conditions. nx=-1 at the left boundary point 

and nx=+1 at the right boundary point.   

The weight function 𝜓 is usually a simple function that can 

be differentiated easily. By applying the shape functions, 

the displacement field can be expressed with respect to the 

nodal displacements and rotations as follows. 

(13) ( )
1

N
w
i i i i

i

W W   
=

= +  

where 
w
i  and i

  are the shape functions of the ith node 

created using all nodes in the support domain, iW  and i  

are the displacement and rotation at node i . It should be 

mentioned that the present study utilizes the radial basis 

function (RBF) as the shape function that will be detailed 

in the next section. The weight function can also be 

estimated as in reference [46] as 

(14) = +w w
i i i i

       

where 
w
i  and i

  are arbitrary constants. In the current 

study, the power weight functions are considered as the 

components of the test functions [47]: 

(15) 

4
2

0
0

0

1 0

0

   −    =    
 

i
w i
i

i

d
d s

s

d s

  

(16) 

=
w
i

i

d

dx

 
  

In these equations ‘ = −i id x x ’ is the distance to the  

node ‘i’  and 0s  determines the extent of the test functions.   

Substituting Equation (13) into Equation (12) yields to:  

 
 

 

Type 1 Type 2 
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Type 3 Type 4 

Fig. 2: Elastic modulus variation in the column length for α = 0.5 and different values of 𝑉𝐶𝑁𝑇
∗  

  

Type 1 Type 2 

  

Type 3 Type 4 

Fig. 3: Elastic modulus variation in the column length for 𝑉𝐶𝑁𝑇
∗ = 0.12 and different values of 𝛼 

  
Table 2: Different types of RBFs [10] 

No. RBF Formula Shape parameters 

1 Multi-quadric (MQ) ( ) ( ) q
ii cxxxR 22

+−=
 

qc ,
 

2 Gaussian (EXP) ( ) ( ) 2
exp ii xxcxR −−=

 
c  

3 Thin plat spline (TPS) ( ) ( )ii xxxR −=
 


 

4 Logarithmic ( ) ( ) ( )iii xxxxxR −−= log


 


 

 

 

where  d  is the nodal displacement vector,  K  is the 

stiffness matrix and   PK  is the geometric stiffness 

matrix [46]. 

(17)    ( )  0PK P K d+ =  
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(18)    
T

1 1 2 2= L N Nd W W W    

(19) 
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=  

      
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 
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 

 
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I
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2 2
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E x E x
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d dd d
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
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
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 −
   
 
    

(20) 

( ) ( )

( ) ( )

( )

sw

sw

s

w w w

i j i jbdry

ij w w

i j i j

3 w 3

j jw w

i i3 3

x 3 w 3

j j

i i3 3

ww w
j ji i

w

j ji i

2 ww
ji

x

k

d d
E x E x

dx dx
n I

d d
E x E x

dx dx

d dd d

dx dx dx dx

d dd d

dx dx dx dx

dd
E x

dx d
n I





  







 





  



    
=   

     

  
  

 +
  
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   
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(21) ( )

2 w 2

j jw w

i i2 2

p ij 2 w 2

j j

i i2 2

d d
d d

dx dx
k

d d
d d

dx dx
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 


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 
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          

    
=  

     
          
    

 

 

 

where 
w

i and i

  are components of the test function, and   

w

j and j

  are the shape functions. The buckling load and 

its associated modes of buckling are determined by 

calculating the Eigenvalues and Eigenvectors of Equation 

(17).  

 

4. Radial basis function (RBF) 

By using the RBF, the lateral displacement function of the 

column ‘W’ over the support domain of an arbitrary point 

can be estimated in terms of its nodal values at all points 

located in the support domain [45,46]: 

(22) 

( ) ( )    
n n

Th

j j j j

j=1 j=1

W R x a S x b R c= + =    

   
T

1 1 2 2 n nR R S R S R S= L   

   
T

1 1 2 2 n nc a b a b a b= L   

where n is the number of nodes located in the support 

domain of the point of interest,  hW  is the approximate 

lateral displacement function, ( )jR x and ( )jS x  are the 

radial basis functions and their derivatives, 
ja  and 

jb  are 

the constant coefficients. 

(23) ( )
( )j

j

dR x
S x

dx
=   

Using Equation (22) the approximation of rotation can be 

written as 

(24) 
( ) ( )n n

j jh

j j

j=1 j=1

dR x dS x
a b

dx dx
 = +    

Equations (22) and (24) can be written in the following 

matrix form: 

(25) 
( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

   

h

1

1

21 1 2 2 n n

21 1 2 2 n n

n

n

T

W

a

b

aR x S x R x S x R x S x

bdR x dS x dR x dS x dR x dS x

dx dx dx dx dx dx

a

b

R c

 
= 

 

 
 
 
  
  
  
     
 
 
 

=

L

L
M

  

The constant coefficients vector of Equation (25) can be 

determined by satisfying this equation in all nodes placed 

in the support domain [45,46]. 

(26)    Qd R c =     

where  d  is a vector that collects the nodal values of 

lateral displacements and rotations at all nodes located in 

the support domain and QR    is the moment matrix 

defined as follows 
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(27) 

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( )

Q

1 1 1 1 2 1 2 1 n 1 n 1

1 1 1 1 1 1 2 1 n 1 n 1

1 2 1 2 2 2 2 2 n 2 n 2

1 2 1 2 2 2 2 2 n 2 n 2

1 n 1 n 2 n 2 n n n n n

1 n 1 n 2 n 2

R

R x S x R x S x R x S x

d R x dS x dS x dS x d R x dS x

dx dx dx dx dx dx

R x S x R x S x R x S x

d R x dS x d R x dS x d R x dS x

dx dx dx dx dx dx

R x S x R x S x R x S x

d R x dS x d R x dS x

dx dx dx

  = 

L

L

L

L

M M M M O M M

L

( ) ( ) ( )n n n n nd R x dS x

dx dx dx

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

L

 

Various radial basis functions have been proposed in the 

literature. The four most often used forms of radial 

functions are listed in Table 2. In this paper, the thin plat 

spline (TPS) radial basis function with the shape parameter 

3 =  is used. Based on Equation (26), if the moment 

matrix is nonsingular, there is a unique solution for vector 

of coefficients. 

(28)    
-1

Qc R d =  
  

By substituting the last equation in Equation (22), The 

matrix of radial basis function   can be obtained as 

follows. 

(29) 

 ( )   
-1Th

QW R R d d = =  
  

   
-1T

Q

w w w

1 1 2 2 n n

R R

  

  = = 

       L

  

 

5. The essential boundary conditions 

The RBF possesses the Kronecker delta function property. 

Hence, in the proposed meshless method, the imposition of 

displacement boundary conditions can be conducted by a 

simple procedure such as penalty method. In penalty 

method, a penalty factor, which is a very large number, is 

assigned to the diagonal element of the stiffness matrix 

related to the closed degree of freedom (DOF). Therefore, 

the displacement of the Intended node must be 

infinitesimal to have a limited value when a very large 

number multiplies it. Thus, zero-value displacement at the 

closed DOF is imposed. It should be noted that if the shape 

functions do not satisfy the Kronecker delta property, the 

essential boundary conditions cannot be directly imposed. 

Up to now, several techniques such as the Lagrange 

multiplier method have been proposed to resolve this 

problem. The use of these methods is not convenient since 

it mainly increases the dimensions of the problem 

matrices. 

 

6. Numerical results 

6.1 Validation 

In order to verify the proposed method, results obtained 

from analysis of a homogenous column by the MLPG 

method with different node numbers are compared with 

those obtained from the exact solution. To achieve a 

homogeneous column in the proposed method, it is enough 

to assume that the volume fraction exponent takes a big 

value such as (𝛼 = 1000) in Equations. (1) to (4). Thus, 

𝑉𝐶𝑁𝑇  becomes zero and it means the column is made of a 

fully isotropic polymer. It worth mentioning that the exact 

buckling load of the simply supported homogenous 

column is obtained using Euler’s method. 

(30) 5

2

2

107378.7 ==
L

IE
p m

ex



  

In the following, the non-dimensional form of buckling 

load is used for comparison purposes which is defined as 

follows: 

(31) 
0

2

IE

LP
P

m

cr
cr




=

  

Figure 4 illustrates the curve of dimensionless buckling 

load versus the number of nodes. As can be seen, an 

increase in the number of nodes causes the results to close 

the corresponding exact value so that the convergence is 

achieved in 20 nodes. Table 3 demonstrates the percentage 

error of the proposed method for different number of 

nodes. The percentage error in this table is calculated by 

the following equation. 

(32) 100(%) 
−

=
ex

exMLPG

P

PP
Err

  

Regarding the results of this table, it is found that the 

MLPG method with ten nodes yields to accurate results 

(error of less than 0.5%) in the buckling analysis of the 

column. 

 
Fig. 4: Effect of number of nodes on buckling load of column. 
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Table 3: Proper numbers of nodes in the meshless method 

Number of nodes crP
 

Percentage error 

2 0.8683 13.17 

   

4 0.9724 2.76 

6 0.9887 1.13 

10 0.9955 0.44 

14 0.9983 0.17 

20 0.9996 0.04 

25 1.0001 0.01 

 

 
Fig. 5: Effect of CNTs volume fraction exponent 𝛼 on the 

buckling capacity of the column (Type 1 and 2 distribution 

functions) 

 
Fig. 6: Effect of CNTs volume fraction exponent 𝛼 on the 

buckling capacity of the column (Type 3 distribution function) 

 

 
Fig. 7: Effect of CNTs volume fraction exponent 𝛼 on the 

buckling capacity of the column (Type 4 distribution function) 
 

6.2 Evaluating the effect of CNTs distribution on the 

Buckling capacity of column 

Figure 5 demonstrates the effect of the CNTs volume 

fraction exponent 𝛼 on the buckling capacity of the simply 

supported column for types 1 and 2 with various 𝑉𝐶𝑁𝑇
∗ . 

Similar curves are also presented for types 3 and 4 in 

Figures 6 and 7, respectively. As can be seen, the buckling 

capacity of the column decreases by increasing the volume 

fraction exponent, and increases by increasing 𝑉𝐶𝑁𝑇
∗ . Also, 

the effect of increasing 𝛼 on the buckling capacity is 

insignificant for 𝛼 values higher than 4. The comparison 

of Figures (5) to (7) reveals that type 3 is of the highest and 

type 4 is of the lowest sensitivity to volume fraction index 

𝛼. For Type 4, an increase in the CNTs volume fraction 

(𝑉𝐶𝑁𝑇
∗ ) has no effect on the buckling capacity at relatively 

high values of 𝛼. It is to be pointed out that there is good 

agreement between the results obtained by type 1 and 2 

functions, which can be justified considering the 

symmetric ends of the column.  

The variation of the buckling load against different values 

of the CNTs volume fraction exponent for all distribution 

functions is plotted in Figure 8 for 𝑉𝐶𝑁𝑇
∗ = 0.12. As can be 

seen, the maximum buckling load for all values of 𝛼 is 

obtained in type 4, in which the CNTs volume fraction is 

higher around the mid-height of the column. For type 3 

with the highest content of CNTs near the support regions, 

the lowest buckling load is obtained at all different volume 

fraction exponents. 

 

 
Fig. 8: Comparison of the buckling loads of reinforced columns 

with different distribution functions for 𝑉𝐶𝑁𝑇
∗ = 0.12. 

 

In Figures 9 and 10, the variation of buckling load with 

CNTs volume fraction exponent for type 3, and various 

boundary conditions respectively for braced and unbraced 

columns are presented. In these figures, the letters C, F, 

and S indicate the clamped, free, and simply supported 

edges, respectively.  According to these figures, the braced 

C-C end support show the highest sensitivity and the C-F 

end support shows the least sensitivity to α changes. 
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Fig. 9: Effect of CNTs volume fraction exponent variation on 

buckling capacity of braced columns with Type 3 and 𝑉𝐶𝑁𝑇
∗ =

0.28  for various end supports. 

 
Fig. 10: Effect of CNTs volume fraction exponent variation on 

buckling capacity of unbraced columns with Type 3 and 

𝑉𝐶𝑁𝑇
∗ = 0.28  for various end supports. 

 

Table 4: A summary of results obtained from buckling analysis of CNT-reinforced columns 

 Type 1 and 2 functions Type 3 function Type 4 function 

𝜶 0.5 1.0 2.0 5.0 0.5 1.0 2.0 5.0 0.5 1.0 2.0 5.0 

𝑽𝑪𝑵𝑻
∗ = 𝟎. 𝟏𝟐 1.47 1.36 1.26 1.17 1.37 1.21 1.09 1.02 1.63 1.52 1.38 1.20 

𝑽𝑪𝑵𝑻
∗ = 𝟎. 𝟏𝟕 1.66 1.49 1.36 1.22 1.52 1.29 1.12 1.03 1.89 1.73 1.52 1.27 

𝑽𝑪𝑵𝑻
∗ = 𝟎. 𝟐𝟖 2.06 1.77 1.56 1.33 1.83 1.44 1.18 1.04 2.46 2.18 1.82 1.40 

6.3 Evaluating the efficiency of MLPG method 

comparing with the finite element method 

In this section, to show the efficiency of MLPG method in 

buckling analysis of FG-CNT reinforced columns, the 

percentage error of FEM and MLPG methods are 

compared for type 1 and 𝑉𝐶𝑁𝑇
∗ = 0.12. Figure 11 shows the 

error percentage of the FEM method against the number of 

elements (two node linear beam elements), and Figure 12 

shows the error percentage of the MLPG method against 

the number of nodes. According to these figures, to 

achieve a proper accuracy (error less than 1%) in the FEM 

method more than 40 elements are required, and in the 

MLPG method just 22 nodes are needed. It should be 

mentioned in these figures, the results of FEM with very 

fine meshing is considered as the exact solution. 

 

 
Fig. 11: The effect of the number of elements on the error in 

buckling load of the FG-CNT reinforced columns with Type 1 

and 𝑉𝐶𝑁𝑇
∗ = 0.12 in FEM. 

 
Fig. 12: The effect of the number of nodes on the error in 

buckling load of the FG-CNT reinforced columns with Type 1 

and 𝑉𝐶𝑁𝑇
∗ = 0.12 in MLPG method. 

  

7. Discussion and conclusion 

The present paper has investigated the effect of reinforcing 

columns by CNTs with different distribution functions on 

their buckling capacity. Due to functionally graded 

variations of CNTs volume fraction in the column length, 

the mechanical properties of the functionally graded 

material have been modeled by employing the extended 

rule of mixture. 

The MLPG method with RBF interpolation has been 

utilized for buckling analysis of FGM columns. Results 

obtained from the buckling analysis of a homogenous 

column using the proposed method and different numbers 

of nodes have been validated by comparing them with the 
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analytical results. Finally, some numerical examples have 

been solved to examine the effects of different parameters 

such as the distribution function, volume fraction 

exponent, and the CNTs volume fraction on the buckling 

capacity of the column. The most critical remarks are 

concluded as follows: 

• MLPG method with more than ten nodes has 

sufficient accuracy (error of less than 0.5%) for 

buckling analysis of columns. 

• By increasing the volume fraction exponent, the 

buckling capacity of the column decreases, and it 

increases by increasing the CNTs volume fractions. 

• Results obtained by type 1 and 2 distribution functions 

are compatible for simply supported columns at both 

ends because of symmetric conditions. 

• The effect of increasing the volume fraction exponent 

on the buckling capacity is mitigated at higher values 

of this parameter. 

• For Type 4 distribution function, an increase in the 

CNTs volume fraction practically has no impact on 

the buckling capacity at relatively high values of the 

volume fraction exponent. 

• For the simply supported column at both ends, the 

column reinforcement by a higher volume fraction of 

CNTs around the mid-height of the column is more 

effective in enhancing the buckling capacity of the 

column. In other words, type 4 and 3 distribution 

functions are the best and worst patterns of the 

reinforcement for the simply supported column, 

respectively. 

The future research fields for the buckling analysis of AFG 

CNT reinforced columns are suggested as follows: 

• Buckling analysis of reinforced columns with 

general elastic supports and non-standard support 

conditions. 

• Buckling analysis of columns embedded in an elastic 

medium. 

• Stochastic buckling analysis of columns considering 

uncertainties in material properties, boundary 

conditions and loading. 

• Buckling analysis of columns under a combined 

loading such as axial compression and torsion. 

• Reinforcing the columns with other nanomaterials 

such as graphene platelets. 

• Investigating the effects of parameters affecting the 

mechanical properties of nanoparticle reinforced 

matrices such as agglomeration, poor dispersion of 

nanoparticle in polymeric or metallic matrix, as well 

as the weak bonding at the interface between 

nanoparticle on buckling capacity of columns. 
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