Volume 1, Issue 4 (6-2017)                   NMCE 2017, 1(4): 23-31 | Back to browse issues page

XML Print

Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Soltani M, Sistani A. Elastic stability of columns with variable flexural rigidity under arbitrary axial load using the finite difference method . NMCE. 2017; 1 (4) :23-31
URL: http://nmce.kntu.ac.ir/article-1-91-en.html
Assistant Professor, Department of civil engineering, University of Kashan, Kashan, Iran , msoltani@kashanu.ac.ir
Abstract:   (1395 Views)


In this paper, the finite difference method (FDM) is applied to investigate the stability analysis and buckling load of columns with variable flexural rigidity, different boundary conditions and subjected to variable axial loads. Between various mathematical techniques adopted to solve the equilibrium equation, the finite difference method, especially in its explicit formulation, requires a minimum of computing stages. This numerical method is therefore one of the most suitable and fast approaches for engineering applications where the exact solution is very difficult to obtain. The main idea of this method is to replace all the derivatives presented in the governing equilibrium equation and boundary condition equations with the corresponding forward, central and backward second order finite difference expressions. The critical buckling loads are finally determined by solving the eigenvalue problem of the obtained algebraic system resulting from FDM expansions. In order to illustrate the correctness and performance of FDM, several numerical examples are presented. The results are compared with finite element results using Ansys software and other available numerical and analytical solutions. The competency and efficiency of the method is then declared.
Full-Text [PDF 597 kb]   (1019 Downloads)    
Type of Study: Research | Subject: General

1. [1] Dinnik A.N. Design of columns of varying cross-section". Transactions of the ASME, Applied mechanics 1929; 51(1): 105-114.
2. [2] Karman T.R, Biot M.A. Mathematical Methods in Engineering. New York, McGraw-Hill, 1940.
3. [3] Timoshenko S.P, Gere J.M. Theory of elastic stability. 2nd Ed. New York, McGraw-Hill, 1961.
4. [4] Gere J.M, Carter W.O. Critical buckling loads for tapered columns. Journal of Structural Engineering ASCE 1962; 88(1): 1-11.
5. [5] Frisch-Fay R. On the stability of a strut under uniformly distributed axial forces. International Journal of Solids and Structures 1962; 2(3): 361-369. [DOI:10.1016/0020-7683(66)90026-6]
6. [6] Ermopulos J. Equivalent buckling length of non-uniform members. Journal of Constructional Steel Research 1977; 42(4):141-158. [DOI:10.1016/S0143-974X(97)00010-2]
7. [7] Iromenger M.J. 1980. Finite difference buckling analysis of non-uniform columns. Computers & Structures 1980; 12(5): 741-748. [DOI:10.1016/0045-7949(80)90176-5]
8. [8] Smith W.G. Analytical solution for tapered column buckling. Computers & Structures 1988; 28(5): 677-681. [DOI:10.1016/0045-7949(88)90011-9]
9. [9] Arbabi F, Li F. Buckling of variable cross-section columns: integral equation approach. Journal of Structural Engineering 1991; 117 (8): 2426-2441. [DOI:10.1061/(ASCE)0733-9445(1991)117:8(2426)]
10. [10] Siginer A. Buckling of columns of variable flexural rigidity. Journal of Engineering Mechanics 1992; 118 (3): 543-640. [DOI:10.1061/(ASCE)0733-9399(1992)118:3(640)]
11. [11] Sampaio J.H.B, Hundhausen J.R. A mathematical model and analytical solution for buckling of inclined beam columns. Applied Mathematical Modeling 1998; 22(6): 405-421. [DOI:10.1016/S0307-904X(98)10014-8]
12. [12] Wang C.M, Wang, C.Y, Reddy J.N, 2005. Exact Solutions for Buckling of Structural Members. CRC Press LLC, Florida. [DOI:10.1201/9780203483534]
13. [13] Li, Q.S, Cao H, Li G. Stability analysis of bars with multi-segments of varying cross section. Computers and Structures 1994; 53(5): 1085-1089. [DOI:10.1016/0045-7949(94)90154-6]
14. [14] Li Q.S, Cao H, Li G. Stability analysis of bars with varying cross section. International Journal of Solids and Structures 1995; 32(21): 3217-3228. [DOI:10.1016/0020-7683(94)00272-X]
15. [15] Li Q.S, Cao H, Li G. Static and dynamic analysis of straight bars with variable cross-section. Computers and Structures 1996; 59(6): 1185-1191. [DOI:10.1016/0045-7949(95)00333-9]
16. [16] Rahai A.R, Kazemi S. Buckling analysis of non-prismatic column based on modified vibration method. Communications in Nonlinear Science and Numerical Simulation 2008; 13: 1721-1735. [DOI:10.1016/j.cnsns.2006.09.009]
17. [17] Coşkun S.B, Atay M.T. Determination of critical buckling load for elastic columns of constant and variable cross-sections using variational iteration method. Computers and Mathematic with Applications 2009; 58(11-12): 2260-2266. [DOI:10.1016/j.camwa.2009.03.072]
18. [18] Huang Y, Luo Q.Z. A simple method to determine the critical buckling loads for axially inhomogeneous beams with elastic restraint. Computers and Mathematics with Applications 2011; 61(9): 2510-2517. [DOI:10.1016/j.camwa.2011.02.037]
19. [19] Okay F, Atay M.T, Coçkun S.B. Determination of buckling loads and mode shapes of a heavy vertical column under its own weight using the variational iteration method. International Journal of Nonlinear Sciences and Numerical Simulation 2010; 11(10): 851-857. [DOI:10.1515/IJNSNS.2010.11.10.851]
20. [20] Atay M.T, Coşkun S. B. Elastic stability of Euler columns with a continuous elastic restraint using variational iteration method. Computers and Mathematics with Applications 2009; 58(11-12): 2528-2534. [DOI:10.1016/j.camwa.2009.03.051]
21. [21] Atay M.T. Determination of critical buckling loads for variable stiffness Euler columns using homotopy perturbation method. International Journal of Nonlinear Sciences and Numerical Simulation 2009; 10(2): 199-206. [DOI:10.1515/IJNSNS.2009.10.2.199]
22. [22] Pinarbasi S. Stability analysis of non-uniform rectangular beams using homotopy perturbation method. Mathematical Problems in Engineering 2012, Article ID.197483. [DOI:10.1155/2012/197483]
23. [23] Eisenberger M, Clastornik J. Beams on variable two-parameter elastic foundation. Journal of Engineering Mechanics 1987; 113(10): 1454-1466. [DOI:10.1061/(ASCE)0733-9399(1987)113:10(1454)]
24. [24] Eisenberger M. Stiffness matrices for non-prismatic members including transverse shear. Computers and Structures 1991; 40(4): 831-835. [DOI:10.1016/0045-7949(91)90312-A]
25. [25] Al-Sadder S.Z. Exact expression for stability functions of a general non- prismatic beam-column member. Journal of Constructional Steel Research 2004; 1561-1584. [DOI:10.1016/j.jcsr.2004.03.004]
26. [26] Asgarian B, Soltani M, Mohri F. Lateral-torsional buckling of tapered thin-walled beams with arbitrary cross-sections. Thin-Walled Structures 2013; 62: 96-108. [DOI:10.1016/j.tws.2012.06.007]
27. [27] Girgin Z.C, Girgin K. A. numerical method for static or dynamic stiffness matrix of non-uniform members resting on variable elastic foundations. Engineering Structures 2005; 27:1373-1384. [DOI:10.1016/j.engstruct.2005.04.005]
28. [28] Soltani M, Asgarian B, Mohri F. Elastic instability and free vibration analyses of tapered thin-walled beams by the power series method. Journal of Constructional Steel Research 2014; 96: 106-126. [DOI:10.1016/j.jcsr.2013.11.001]
29. [29] MATLAB Version7.6.MathWorks Inc, USA, 2008. [DOI:10.1016/S1365-6937(08)70308-3]
30. [30] ANSYS, Version 5.4, Swanson Analysis System, Inc, 2007.

Add your comments about this article : Your username or Email:

Send email to the article author