Volume 6, Issue 2 (12-2021)                   NMCE 2021, 6(2): 66-76 | Back to browse issues page

XML Print

Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Ghanbari Soumeh K, Parvini Sani H. Optimization of through-bolt steel beam connection to CFST column reinforced with rib plates using RSM method and MCEO algorithm. NMCE 2021; 6 (2) :66-76
URL: http://nmce.kntu.ac.ir/article-1-386-en.html
1- M.Sc, Department of Civil Engineering, Zanjan Branch, Islamic Azad University, Zanjan, Iran.
2- Assistant Professor, Department of Civil Engineering, Zanjan Branch, Islamic Azad University, Zanjan, Iran. , hossein.parvini_sani@iauz.ac.ir
Abstract:   (640 Views)
Today, one of the most important engineering requirements is to ensure optimal design with best possible seismic performance of structures. To this end, the present paper aims to apply the optimization process for the design of the through-bolt steel beam connection to the concrete-filled steel tube (CFST) column reinforced with rib plates. This study employs a multi-level cross-entropy optimizer (MCEO) algorithm along with response surface method (RSM) and finite element method (FEM) to establish the objective functions and constraints. The variables considered are the rib plate geometry and the steel and concrete strength parameters. In order to overcome problems, optimization is performed to increase the load-bearing capacity of the connection and to satisfy the constraints. Adopting this smart solution eliminates the need to connect finite elements for loop optimization and provides an explicit function for system performance. The results show that a very accurate analytical model can be developed to describe system performance using this process. This solution can optimize the performance of several systems that require a large amount of analysis and solve a wide range of structural optimization problems.
Full-Text [PDF 1352 kb]   (315 Downloads)    
Type of Study: Research | Subject: Special
Received: 2021/06/1 | Revised: 2021/08/20 | Accepted: 2021/08/29 | ePublished ahead of print: 2021/09/14

1. Parvini Sani H, Gholhaki M, Banazadeh M. (2018). Simplified direct loss measure for seismic isolated steel moment-resisting structures. J Constr Steel Res, 147:313-23. [DOI:10.1016/j.jcsr.2018.04.010]
2. Sani HP, Gholhaki M, Banazadeh M. (2017). Seismic Performance Assessment of Isolated Low-Rise Steel Structures Based on Loss Estimation. J Perform Constr Facil, 31:04017028. [DOI:10.1061/(ASCE)CF.1943-5509.0001028]
3. Banazadeh M, Gholhaki M, Parvini Sani H. (2017). Cost-benefit analysis of seismic-isolated structures with viscous damper based on loss estimation. Struct Infrastruct Eng, 13:1045-55. [DOI:10.1080/15732479.2016.1236131]
4. Kaveh A, Khodadadi N, Azar BF, Talatahari S. (2020). Optimal design of large-scale frames with an advanced charged system search algorithm using box-shaped sections. Eng Comput, [DOI:10.1007/s00366-020-00955-7]
5. Alhaddad W, Halabi Y, Meree H, Yu Z. (2020). Optimum design method for simplified model of outrigger and ladder systems in tall buildings using genetic algorithm. Structures , 28:2467-87. [DOI:10.1016/j.istruc.2020.09.066]
6. Das R, Steensels R, Dragan D, Vandoren B, Degée H. (2020). Characterization and optimization of a steel beam to RC wall connection for use in innovative hybrid coupled wall systems. Structures, 23:111-25. [DOI:10.1016/j.istruc.2019.10.011]
7. Shehab M, Alshawabkah H, Abualigah L, AL-Madi N. (2020). Enhanced a hybrid moth-flame optimization algorithm using new selection schemes. Eng Comput, [DOI:10.1007/s00366-020-00971-7]
8. Zou D, Gao L, Li S, Wu J. (2011). An effective global harmony search algorithm for reliability problems. Expert Syst Appl, 38(4):4642-48. [DOI:10.1016/j.eswa.2010.09.120]
9. Mirjalili S. (2015). Moth-flame optimization algorithm: A novel nature-inspired heuristic paradigm. Knowledge-Based Syst, 89:228-49. [DOI:10.1016/j.knosys.2015.07.006]
10. Zhang T. (2018). Robust reliability-based optimization with a moment method for hydraulic pump sealing design. Struct Multidiscip Optim, 58:1737-50. [DOI:10.1007/s00158-018-1996-1]
11. Ami M, Zahrai SM. (2021). Effect of bolted shear connectors on the axial load-bending moment interaction capacity of CFT columns. Structures, 29:92-106. [DOI:10.1016/j.istruc.2020.10.072]
12. Hassan MM, Ramadan HM, Abdel-Mooty M, Mourad SA. (2020). Seismic behavior of braced frames with different connection details to concrete filled tube columns. Structures, 28:2379-91. [DOI:10.1016/j.istruc.2020.10.031]
13. Rezaifar O, Younesi A. (2017). Experimental study discussion of the seismic behavior on new types of internal/external stiffeners in rigid beam-to-CFST/HSS column connections. Constr Build Mater , 136:574-89. [DOI:10.1016/j.conbuildmat.2017.01.032]
14. Han LH, Li W, Bjorhovde R. (2014). Developments and advanced applications of concrete-filled steel tubular (CFST) structures: Members. J Constr Steel Res, 100:211-28. [DOI:10.1016/j.jcsr.2014.04.016]
15. Liang QQ. (2009). Performance-based analysis of concrete-filled steel tubular beam-columns, Part II: Verification and applications. J Constr Steel Res, 65(2):351-62. [DOI:10.1016/j.jcsr.2008.03.003]
16. Zhou G, An Y, Wu Z, Li D, Ou J. (2018). Analytical Model for Initial Rotational Stiffness of Steel Beam to Concrete-Filled Steel Tube Column Connections with Bidirectional Bolts. J Struct Eng, 144(11):04018199. [DOI:10.1061/(ASCE)ST.1943-541X.0002187]
17. Wu LY, Chung LL, Tsai SF, Lu CF, Huang GL. (2007). Seismic behavior of bidirectional bolted connections for CFT columns and H-beams. Eng Struct, 29(3):395-407. [DOI:10.1016/j.engstruct.2006.05.007]
18. Wang JF, Han LH, Uy B. (2009). Behaviour of flush end plate joints to concrete-filled steel tubular columns. J Constr Steel Res, 65(4):925-39. [DOI:10.1016/j.jcsr.2008.10.010]
19. Wang J, Zhang N, Guo S. (2016). Experimental and numerical analysis of blind bolted moment joints to CFTST columns. Thin-Walled Struct, 109:185-201. [DOI:10.1016/j.tws.2016.07.017]
20. Hanoon, A. N., Al Zand, A. W., & Yaseen, Z. M. (2021). Designing new hybrid artificial intelligence model for CFST beam flexural performance prediction. Engineering with Computers, 1-27. [DOI:10.1007/s00366-021-01325-7]
21. Nguyen, H. Q., Ly, H.-B., Tran, V. Q., Nguyen, T.-A., Le, T.-T., & Pham, B. T. (2020). Optimization of artificial intelligence system by evolutionary algorithm for prediction of axial capacity of rectangular concrete filled steel tubes under compression. Materials, 13(5), 1205. [DOI:10.3390/ma13051205]
22. Yang, X., Yan, W., Chen, S., & Sun, H. (2010). Sequence optimization of concrete casting in steel tubular ribs for long-span CFST arch bridge. Journal of Highway and Transportation Research and Development, 27(1).
23. Zhang, W., Chen, Z.-H., Xiong, Q.-Q., & Zhou, T. (2019). Seismic optimization analysis of vertical stiffener connection to L-CFST column. Advanced Steel Construction, 15(1), 100-108.
24. G. Pachideh, M. Gholhaki, A. Moshtagh, Impact of Temperature Rise on the Seismic Performance of Concrete-Filled Double Skin Steel Columns with Prismatic Geometry, J. Test. Eval. 49 (2020). [DOI:10.1520/JTE20200037]
25. G. Pachideh, M. Gholhaki, A. Moshtagh, An Experimental Study on Cyclic Performance of the Geometrically Prismatic Concrete-Filled Double Skin Steel Tubular (CFDST) Columns, Iran. J. Sci. Technol. Trans. Civ. Eng. 45 (2021) 629-638. [DOI:10.1007/s40996-020-00410-z]
26. MiarNaeimi F, Azizyan G, Rashki M. (2018). Multi-level cross entropy optimizer (MCEO): an evolutionary optimization algorithm for engineering problems. Eng Comput, 34:719-739. [DOI:10.1007/s00366-017-0569-z]
27. Tien CL, Lin SW. (2006). Optimization of process parameters of titanium dioxide films by response surfaces methodology. Opt Commun , 266(2):574-81. [DOI:10.1016/j.optcom.2006.05.044]
28. Gayton N, Bourinet JM, Lemaire M. (2003). CQ2RS: A new statistical approach to the response surface method for reliability analysis. Struct Saf, 25(1):99-121. [DOI:10.1016/S0167-4730(02)00045-0]
29. Zhang Z, Jiang C, Han X, Hu D, Yu S. (2014). A response surface approach for structural reliability analysis using evidence theory. Adv Eng Softw, 69:37-45. https://doi.org /10.1016/j.advengsoft.2013.12.005.
30. Korumaz M, Betti M, Conti A, Tucci G, Bartoli G, Bonora V, et al. (2017). An integrated Terrestrial Laser Scanner (TLS), Deviation Analysis (DA) and Finite Element (FE) approach for health assessment of historical structures. A minaret case study. Eng Struct , 153:224-38. [DOI:10.1016/j.engstruct.2017.10.026]
31. Wu LY, Chung LL, Tsai SF, Shen TJ, Huang GL. (2005). Seismic behavior of bolted beam-to-column connections for concrete filled steel tube. J Constr Steel Res, 61(10):1387-410. [DOI:10.1016/j.jcsr.2005.03.007]

Add your comments about this article : Your username or Email:

Send email to the article author