1. [1] Somerville P. Seismic hazard evaluation. Bull New Zeal Soc Earthq Eng 2000;33:371-86. [
DOI:10.5459/bnzsee.33.3.371-386]
2. [2] Abrahamson N. Incorporating effects of near fault tectonic deformation into design ground motions. A Present Spons by EERI Visit Prof Program, Hosted by Univ Buffalo 2001.
3. [3] Chen X, Liu Y, Zhou B, Yang D. Seismic response analysis of intake tower structure under near-fault ground motions with forward-directivity and fling-step effects. Soil Dyn Earthq Eng 2020;132:106098. [
DOI:10.1016/j.soildyn.2020.106098]
4. [4] Bertero V V, Herrera RA, Mahin SA. Establishment of design earthquakes-Evaluation of present methods. Proc., Int. Symp. Earthq. Struct. Eng., vol. 1, Univ. of Missouri-Rolla Rolla, Mo.; 1976, p. 551-80.
5. [5] Iwan WD, Huang C-T, Guyader AC. Important features of the response of inelastic structures to near-field ground motion. Proc. 12th World Conf. Earthq. Eng., 2000.
6. [6] Masaeli H, Khoshnoudian F, Ziaei R. Rocking soil-structure systems subjected to near-fault pulses. J Earthq Eng 2015;19:461-79. [
DOI:10.1080/13632469.2014.990652]
7. [7] Jangid RS, Kelly JM. Base isolation for near‐fault motions. Earthq Eng Struct Dyn 2001;30:691-707. [
DOI:10.1002/eqe.31]
8. [8] Pavlou EA, Constantinou MC. Response of elastic and inelastic structures with damping systems to near-field and soft-soil ground motions. Eng Struct 2004;26:1217-30. [
DOI:10.1016/j.engstruct.2004.04.001]
9. [9] Mavroeidis GP, Dong G, Papageorgiou AS. Near‐fault ground motions, and the response of elastic and inelastic single‐degree‐of‐freedom (SDOF) systems. Earthq Eng Struct Dyn 2004;33:1023-49. [
DOI:10.1002/eqe.391]
10. [10] Kalkan E, Kunnath SK. Effects of fling step and forward directivity on seismic response of buildings. Earthq Spectra 2006;22:367-90. [
DOI:10.1193/1.2192560]
11. [11] Zhai C, Li S, Xie L, Sun Y. Study on inelastic displacement ratio spectra for near-fault pulse-type ground motions. Earthq Eng Eng Vib 2007;6:351-5. [
DOI:10.1007/s11803-007-0755-x]
12. [12] Yalcin OF, Dicleli M. Effect of the high frequency components of near-fault ground motions on the response of linear and nonlinear SDOF systems: a moving average filtering approach. Soil Dyn Earthq Eng 2020;129:105922. [
DOI:10.1016/j.soildyn.2019.105922]
13. [13] Lu Y, Hajirasouliha I, Marshall AM. Direct displacement-based seismic design of flexible-base structures subjected to pulse-like ground motions. Eng Struct 2018;168:276-89. [
DOI:10.1016/j.engstruct.2018.04.079]
14. [14] Spyrakos CC, Nikolettos GS. Overturning stability criteria for flexible structures to earthquakes. J Eng Mech 2005;131:349-58. [
DOI:10.1061/(ASCE)0733-9399(2005)131:4(349)]
15. [15] Zhang J, Tang Y. Dimensional analysis of structures with translating and rocking foundations under near-fault ground motions. Soil Dyn Earthq Eng 2009;29:1330-46. [
DOI:10.1016/j.soildyn.2009.04.002]
16. [16] Acikgoz S, DeJong MJ. The interaction of elasticity and rocking in flexible structures allowed to uplift. Earthq Eng Struct Dyn 2012;41:2177-94. [
DOI:10.1002/eqe.2181]
17. [17] Peng W, Zhao H, Dai F, Taciroglu E. Analytical method for overturning limit analysis of single-column pier bridges. J Perform Constr Facil 2017;31:4017007. [
DOI:10.1061/(ASCE)CF.1943-5509.0000999]
18. [18] Haeri SM, Fathi A. Numerical modeling of rocking of shallow foundations subjected to slow cyclic loading with consideration of soil-structure interaction. ArXiv Prepr ArXiv180804492 2018.
19. [19] Jia C, Huang Q, Wang G. Stability analysis of blocky structure system using discontinuity layout optimization. Int J Numer Methods Eng 2020;121:5766-83. [
DOI:10.1002/nme.6523]
20. [20] Ishiyama Y. Review and discussion on overturning of bodies by earthquake motions 1980.
21. [21] Koh A-S, Spanos PD, Roesset JM. Harmonic rocking of rigid block on flexible foundation. J Eng Mech 1986;112:1165-80. [
DOI:10.1061/(ASCE)0733-9399(1986)112:11(1165)]
22. [22] Psycharis IN, Jennings PC. Rocking of slender rigid bodies allowed to uplift. Earthq Eng Struct Dyn 1983;11:57-76. [
DOI:10.1002/eqe.4290110106]
23. [23] Makris N, Roussos YS. Rocking response of rigid blocks under near-source ground motions. Geotechnique 2000;50:243-62. [
DOI:10.1680/geot.2000.50.3.243]
24. [24] Gerolymos N, Apostolou M, Gazetas G. Neural network analysis of overturning response under near-fault type excitation. Earthq Eng Eng Vib 2005;4:213. [
DOI:10.1007/s11803-005-0004-0]
25. [25] Gelagoti F, Kourkoulis R, Anastasopoulos I, Gazetas G. Rocking-isolated frame structures: Margins of safety against toppling collapse and simplified design approach. Soil Dyn Earthq Eng 2012;32:87-102. [
DOI:10.1016/j.soildyn.2011.08.008]
26. [26] Bielak J. Base moment for a class of linear systems. J Eng Mech Div 1969;95:1053-62. [
DOI:10.1061/JMCEA3.0001163]
27. [27] Bray JD, Rodriguez-Marek A. Characterization of forward-directivity ground motions in the near-fault region. Soil Dyn Earthq Eng 2004;24:815-28. [
DOI:10.1016/j.soildyn.2004.05.001]
28. [28] Alavi B, Krawinkler H. Consideration of near-fault ground motion effects in seismic design. Proc. 12th World Conf. Earthq. Eng., vol. 8, 2000.
29. [29] Sasani M, Bertero V V. Importance of Severe Pulse-Type Ground Motions in Performance-Based Engineering: Historical and Critical. Proc. 12th World Conf. Earthq. Eng. New Zeal. Soc. Earthq. Eng. Up. Hutt, New Zeal., 2000.
30. [30] He W-L, Agrawal AK. Analytical model of ground motion pulses for the design and assessment of seismic protective systems. J Struct Eng 2008;134:1177-88. [
DOI:10.1061/(ASCE)0733-9445(2008)134:7(1177)]
31. [31] Xin L, Li X, Zhang Z, Zhao L. Seismic behavior of long-span concrete-filled steel tubular arch bridge subjected to near-fault fling-step motions. Eng Struct 2019;180:148-59. [
DOI:10.1016/j.engstruct.2018.11.006]
32. [32] Zengin E, Abrahamson NA. A vector‐valued intensity measure for near‐fault ground motions. Earthq Eng Struct Dyn 2020;49:716-34. [
DOI:10.1002/eqe.3261]
33. [33] Howard JK, Tracy CA, Burns RG. Comparing observed and predicted directivity in near-source ground motion. Earthq Spectra 2005;21:1063-92. [
DOI:10.1193/1.2044827]
34. [34] Mavroeidis GP, Papageorgiou AS. A mathematical representation of near-fault ground motions. Bull Seismol Soc Am 2003;93:1099-131. [
DOI:10.1785/0120020100]
35. [35] Li X, Zhu X. Study on equivalent velocity pulse of nearfault ground motions. Acta Seismol Sin 2004;17:697-706. [
DOI:10.1007/s11589-004-0009-1]
36. [36] International Code Council. International building code. 2018.
37. [37] Jennings PC, Bielak J. Dynamics of building-soil interaction. Bull Seismol Soc Am 1973;63:9-48.
38. [38] Federal Emergency Management Agency. NEHRP Recommended Seismic Provisions: Design Examples 2012.
39. [39] American Society of Civil Engineers. Minimum design loads for buildings and other structures: second Printing (ASCE/SEI 7). 2010.
40. [40] Roussis PC, Odysseos S. Dynamic response of seismically isolated rigid blocks under near-fault ground motions. Proc. 15th World Conf. Earthq. Eng., 2012.
41. [41] Clough RW, Penzien J. Dynamics of structures. Berkeley. CA Comput Struct 2003.
42. [42] The MathWorks. MATLAB & Statistics Toolbox Release 2012.
43. [43] Housner GW. The behavior of inverted pendulum structures during earthquakes. Bull Seismol Soc Am 1963;53:403-17.
44. [44] Gelagoti F, Kourkoulis R, Anastasopoulos I, Gazetas G. Rocking isolation of low‐rise frame structures founded on isolated footings. Earthq Eng Struct Dyn 2012;41:1177-97. [
DOI:10.1002/eqe.1182]