Volume 3, Issue 4 (6-2019)                   NMCE 2019, 3(4): 42-52 | Back to browse issues page

XML Print

Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Beheshti-Aval S, Parsaei M. Using FEM to achieve acceptance criteria in FEMA performance levels for FRP-wrapped RC circular columns. NMCE. 2019; 3 (4) :42-52
URL: http://nmce.kntu.ac.ir/article-1-217-en.html
Associate Professor, Faculty of Civil Engineering, K. N. Toosi University of Technology, Tehran, Iran. , beheshti@kntu.ac.ir
Abstract:   (29 Views)
Using fiber reinforced Polymer composite materials (FRP) in the rehabilitation schemes of vulnerable structural members is becoming more popular over the past decades. From the analytical point of view, the lack of numerical acceptance criteria in attaining the desired performance goal is a major restriction in employing this retrofitting method. The major parameter to control the seismic performance of frame members in nonlinear behavior is plastic hinge rotation angle (PHRA) especially for deformation-controlled actions. To predict accurate performance of RC columns, strengthened with externally-bonded FRP, there is an urgent need to discover PHRA as the acceptance criteria in a nonlinear static procedure stipulated in ASCE/SEI 41-13 standard. As indicated, the parameters such as FRP thickness to section diameter ratio (aspect ratio), the relative height of FRP and the FRP material properties have significant influence on the behavior of the members strengthened with FRP under combineed cyclic axial-flexural loading. For easy to use, analytical formulation is calibrated to evaluate PHRA as the function of the aforementioned triple parameters. An attempt has been made to simulate the RC columns with FRP laminate with general-purpose finite element software ABAQUS. Verification of the numerical method has been done by comparing numerical results versus existing experimental tests.
Full-Text [PDF 1023 kb]   (13 Downloads)    
Type of Study: Research | Subject: General

1. [1] Teng, J.G., Xiao, Q. G., Yu, T., Lam, L., "Three-dimensional finite element analysis of reinforced concrete columns with FRP and/or steel confinement", Eng. Struct., vol. 97, 2015, p. 15-28. [DOI:10.1016/j.engstruct.2015.03.030]
2. [2] Tarabi, A. M., Albakry, F. H., "Strengthening of RC columns by steel angles and strips", Alexandria Engineering, vol. 53, Issue 3, 2014, p. 615-626. [DOI:10.1016/j.aej.2014.04.005]
3. [3] Ozbakkaloglu, T., Xie, T. Y., "Geopolymer concrete-filled FRP tubes: Behavior of circular and square columns under axial compression", Compos. B Eng., vol. 96, 2016, p. 215-230 [DOI:10.1016/j.compositesb.2016.04.013]
4. [4] Mazzucco, G., Salomoni, V., Majorana, C., Pellegrino, C., Ceccato, C., "Numerical investigation of concrete columns with external FRP jackets subjected to axial loads", Constr. Build. Mater., vol. 111, 2016, 590-599. [DOI:10.1016/j.conbuildmat.2016.02.050]
5. [5] Paultre, P., M, B. T., Eid, R., and Roy, N., "Behavior of circular reinforced-concrete columns confined with carbon fiber-reinforced polymers under cyclic flexure and
6. constant axial load", J. of Comp. Constr., ASCE, vol. 20(3). 2015.
7. [6] Mostofinejad, D., Moshiri, N., Mortazavi, N., "Effect of corner radius and aspect ratio on compressive behavior of rectangular concrete columns confined with CFRP", Mater. Struct., vol. 48, 2015, p. 107-122. [DOI:10.1617/s11527-013-0171-9]
8. [7] ID, J. Z., Guo, Y., Li, L. and Chen, W. , "Behavior and Three-Dimensional Finite Element Modeling of Circular Concrete Columns Partially Wrapped with FRP Strips", MDPI, polymers, 2018.
9. [8] Lin, G., Teng, J. G., "Three-dimensional finite-element analysis of FRP-confined circular concrete columns under eccentric loading", J. Compos. Constr., vol. 21, 2017. [DOI:10.1061/(ASCE)CC.1943-5614.0000772]
10. [9] Girgin, Z. C., Girgin, K. A., "design-oriented combined model (7 to 190 MPa) for FRP-confined circular short columns", Polymers, vol. 7, 2015, p. 1905-1917 [DOI:10.3390/polym7101489]
11. [10] Hoshikuma, J. Kawashima, K., Nagaya, K., Taylor, A. W., "Stress-strain model for confined reinforced concrete in bridge piers", J. Struct. Eng., ASCE, vol. 123(5), 1997, p. 624-638. [DOI:10.1061/(ASCE)0733-9445(1997)123:5(624)]
12. [11] Wu, H.,"Constitutive Model of Concrete Confined by Advanced Fiber Composite Materials and Applications in Seismic Retrofitting", University of Southern California, August 2007.
13. [12] Hales, T. A., Pantelides, C. P., Reaveley, L. D., "Analytical buckling model for slender FRP-reinforced concrete columns", Composite Structures, vol. 176, 2017, p. 33-42. [DOI:10.1016/j.compstruct.2017.05.034]
14. [13] Parsaei, M., "The Seismic Behavior of Reinforced Concrete Bridges Pier Retrofitted with FRP", MSc thesis, University of Science and Culture, Faculty of Technical and Engineering, 2009.
15. [14] Ghanem, S. Y., "Circular RC Columns Partially Confined With FRP", University of Kentucky, PhD Dissertations, Civil Engineering, 2016.
16. [15] ASCE/SEI 41-13, "Seismic Rehabilitation of Existing Buildings", ASCE, 2013.
17. [16] ACI 440.2R-17, "Guide for the Design and Construction of Externally Bonded FRP Systems for Strengthening Concrete Structures", Reported by ACI Committee 440, 2017.
18. [17] AC125, "Acceptance Criteria for Concrete and Reinforced and Unreinforced Masonry Strengthening Using Fiber-Reinforced Polymer (FRP), Composite Systems, 2013.
19. [18] Monti, G., Alessandri, S., "Design Equations for FRP-Strengthening of Columns", Conference: FRPRCS7, 6-9 November 2005, Kansas City, MO USA, SP-230-60.
20. [19] Eamonm, C. D., Wu, H. C., Makkawy, A. A., Siavashi, S., "Design and Construction Guidelines for Strengthening Bridges using Fiber Reinforced Polymers (FRP)", Michigan Department of Transportation Research Administration 425 West Ottawa Street Lansing MI 48933 MDOT Reference Number: OR10-039 FINAL REPORT September 30, 2014.
21. [20] ABAQUS Analysis User's Manual version 6.8.1
22. [21] Saadatmanesh, H., Ehsani, M.R., Jin. L., "Seismic Strengthening of Circular Bridge Pier Models with Fiber Composites", ACI Structural Journal, vol. 93(6), 1996, p. 639-647. [DOI:10.14359/510]
23. [22] Seible, F., Priestley M. J. N., Hegemier, G. A., Innamorato, D., "Seismic retrofitting of RC columns with continuous carbon fiber jackets", Journal of Composites for Construction, vol. 1(2), 1997, p. 52-62. [DOI:10.1061/(ASCE)1090-0268(1997)1:2(52)]
24. [23] Teng, J.G., Chen, J.F., Smith, S.T, Lam, L., "FRP strengthend RC structures", John Wiley & Sons, New York, NY., 2002.
25. [24] Binici, B., Mosalam, K.M., "Analysis of reinforced concrete columns retrofitted with fiber reinforced polymer lamina", Journal of Composites: Part B 38, 2007, p. 265-276. [DOI:10.1016/j.compositesb.2006.01.006]
26. [25] Priestley, M. J. N., Seible, F., and Calvi, G. M., "Seismic Design and Retrofit of Bridges", John Wiley & Sons, Inc., New York, 1996. [DOI:10.1002/9780470172858]
27. [26] Ye, L.P., Zhang K., Zhao S.H., and Feng P.," Experimental study on seismic strengthening of RC columns with wrapped CFRP sheets", Construction and Building Materials, 2003, p.499-506, doi:10.1016/S0950-0618(03)00047-3. [DOI:10.1016/S0950-0618(03)00047-3]
28. [27] Pantelides, C.P., Gergely, J., Reaveley, L.D. And Volnyy, V.A., "Seismic Strengthening of Reinforced Concrete Bridge Pier with FRP Composites, 12WCEE, 2000

Add your comments about this article : Your username or Email:

Send email to the article author