1. [1] Arzani, H., Afshar, M.H., "Solving Poisson's equations by the discrete least square meshless method", WIT Transactions on Modeling and Simulation, 42, 2006, pp. 23-31. [
DOI:10.2495/BE06003]
2. [2] Arzani, H., Kaveh, A., Dehghana, M., "Adaptive node moving refinement in discrete least squares meshless method using charged system search", ScientiaIranica. Transaction A, Civil Engineering, 21, 2014, p. 1529.
3. [3] Bank, Randolph E., "PLTMG: A Software Package for Solving Elliptic Partial Differential Equations, User's Guide 6.0", Society for Industrial and Applied Mathematics, Philadelphia, PA, 1990.
4. [4] Johnson, C., "Numerical solution of partial differential equations by the finite element method", Studentlitteratur, Lund, Sweden, 1987
5. [5] Johnson, C., Eriksson, K., "Adaptive finite element methods for parabolic Problems I: A Linear Model Problem", SIAM J, 28, 1991, p. 43-77. [
DOI:10.1137/0728003]
6. [6] Kaveh, A., Mahdavi, V. R. "Colliding Bodies Optimization : Extensions and Applications." Springer International Publishing, Switzerland. 2015. [
DOI:10.1007/978-3-319-19659-6]
7. [7] Kaveh, A., Mahdavi, V. R. "Colliding bodies optimization: A novel metaheuristic method." Computers & Structures. 139, pp. 18-27. 2014. [
DOI:10.1016/j.compstruc.2014.04.005]
8. [8] Nguyen-Thanh, N., Rabczuk, T., Nguyen-Xuan, H., Bordas, S. P. A. "An alternative alpha finite element method (AFEM) for free and forced structural vibration using triangular meshes", in Journal of Computational and Applied Mathematics, 233, 2010, pp. 2112-2135. [
DOI:10.1016/j.cam.2009.08.117]
9. [9] Ozyon, S., Temurta., H.,Durmu., B., Kuvat, G., "Charged system search algorithm for emission constrained economic power dispatch problem", Energy, 46, 2012, pp. 420-430. [
DOI:10.1016/j.energy.2012.08.008]
10. [10] Plaza, A., Padrón, M. A., Suárez, J. P., "Non-degeneracy study of the 8-tetrahedra longest-edge partition", Applied Numerical Mathematics, 55, 2005, pp. 458-472. [
DOI:10.1016/j.apnum.2004.12.003]
11. [11] Rosenberg, I. G., Stenger, F., "A lower bound on the angles of triangles constructed by bisecting the longest side", Math. Comp, 29, 1975, p. 390-395. [
DOI:10.2307/2005558]
12. [12] Timoshenko, S., Goodier, J.N., "Theory of elasticity, 3th ed", McGraw- Hill book, Inc., New York, USA, 1970 [
DOI:10.1115/1.3408648]
13. [13] Yershov, D. S,. Frazzoli, E., "Asymptotically optimal feedback planning using a numerical Hamilton-Jacobi-Bellman solver and an adaptive mesh refinement", Int. J. Rob. Res, 35, 2016, p. 565-584. [
DOI:10.1177/0278364915602958]
14. [14] Zeng, W., Liu, G.R., Li, D., Dong, X.W., "A smoothing technique based beta finite element method (βFEM) for crystal plasticity modeling", Computers & Structures, 162, 2016, pp. 48-67. [
DOI:10.1016/j.compstruc.2015.09.007]
15. [15] Zienkiewicz, O.C., "Achievements and some unsolved problems of the finite element method", International Journal for Numerical Methods in Engineering, 47, 2000, pp. 9-28.
https://doi.org/10.1002/(SICI)1097-0207(20000110/30)47:1/3<9::AID-NME793>3.0.CO;2-P [
DOI:10.1002/(SICI)1097-0207(20000110/30)47:1/33.0.CO;2-P]
16. [16] Zienkiewicz, O.C., "The background of error estimation and adaptivity in finite element computations", Computer Methods in Applied Mechanics and Engineering, 195, 2006, pp. 207-213. [
DOI:10.1016/j.cma.2004.07.053]
17. [17] Zienkiewicz, O.C., Zhu, J.Z., "A simple error estimator and adaptive procedure for practical engineering analysis", International Journal for Numerical Methods in Engineering, 24, 1987, pp. 337-357. [
DOI:10.1002/nme.1620240206]