Volume 2, Issue 1 (9-2017)                   NMCE 2017, 2(1): 61-71 | Back to browse issues page

XML Print

Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Gholizad A, Safari H. Damage identification of structures using experimental modal analysis and continuous wavelet transform. NMCE. 2017; 2 (1) :61-71
URL: http://nmce.kntu.ac.ir/article-1-108-en.html
Associate Professor. Department of Civil Engineering, University of Mohaghegh Ardabili, Ardabil, Iran Email: gholizad@uma.ac.ir , gholizad@uma.ac.ir
Abstract:   (919 Views)


Modal analysis is a powerful technique for understanding the behavior and performance of structures. Modal analysis can be conducted via artificial excitation, e.g. shaker or instrument hammer excitation. Input force and output responses are measured. That is normally referred to as experimental modal analysis (EMA). EMA consists of three steps: data acquisition, system identification and modal parameter estimation. EMA, which is also known as frequency response function (FRF) testing, has been widely preferred for the modal parameter estimation of structures. The main objective of this paper is to determine the locations of damages by applying the wavelet transform to the measured mode shapes. The mode shapes are obtained from EMA by applying FRF of structure as the input data. In the present work, a two-stage method of determining the location of multiple structural damages on space structures is proposed. Firstly, EMA is applied to estimate the first mode shape of space structure by applying FRF as input data. In the second stage the mechanism of using 2D- CWT is applied by exploiting the concept of simulating the mode shape of space structure to a 2D spatially distributed signal for damage localization of space structure. Multiplicities of structural elements and joints are the main challenges related to damage detection of space structure. The validation of EMA is performed with modal assurance criterion (MAC). Seven numerical examples are conducted on two double layer diamatic domes with different sizes to assess the effectiveness of the proposed 2D-CWT method. The results demonstrate the reliability and applicability of the introduced method.
Full-Text [PDF 1279 kb]   (951 Downloads)    
Type of Study: Research | Subject: Special

1. [1] AISC (1999), Resistance factor design specification for structural steel buildings. , American Institute of Steel Construction, Chicago.
2. [2] Bharathi Priya, C. and Likhith Reddy, A. (2014), "Low frequency and boundary condition effects on impedance based damage identification", Case Studies in Nondestructive Testing and Evaluation, 2, 9-13. [DOI:10.1016/j.csndt.2014.05.001]
3. [3] Bull, D.J., Helfen, L., Sinclair, I., Spearing, S.M. and Baumbach, T. (2013), "A comparison of multi-scale 3D X-ray tomographic inspection techniques for assessing carbon fibre composite impact damage", Composites Science and Technology, 75, 55-61. [DOI:10.1016/j.compscitech.2012.12.006]
4. [4] Castro, E., García-Hernandez, M.T. and Gallego, A. (2006), "Damage detection in rods by means of the wavelet analysis of vibrations: Influence of the mode order", Journal of Sound and Vibration, 296(4-5), 1028-1038. [DOI:10.1016/j.jsv.2006.02.026]
5. [5] Cawley, P. and Adams, R.D. (1979), "The location of defects in structures from measurements of natural frequencies", The Journal of Strain Analysis for Engineering Design, 14(2), 49-57. [DOI:10.1243/03093247V142049]
6. [6] Douka, E., Loutridis, S. and Trochidis, A. (2004), "Crack identification in plates using wavelet analysis", Journal of Sound and Vibration, 270(1-2), 279-295. [DOI:10.1016/S0022-460X(03)00536-4]
7. [7] Fan, W. and Qiao, P. (2009), "A 2-D continuous wavelet transform of mode shape data for damage detection of plate structures", International Journal of Solids and Structures, 46(25-26), 4379-4395. [DOI:10.1016/j.ijsolstr.2009.08.022]
8. [8] Gallego, A., Moreno-García, P. and Casanova, C.F. (2013), "Modal analysis of delaminated composite plates using the finite element method and damage detection via combined Ritz/2D-wavelet analysis", Journal of Sound and Vibration, 332(12), 2971-2983. [DOI:10.1016/j.jsv.2013.01.012]
9. [9] Gandomi, A.H., Sahab, M.G. and Rahai, A. (2011), "A dynamic nondestructive damage detection methodology for orthotropic plate structures", Structural Engineering and Mechanics, 39(2), 223-239. [DOI:10.12989/sem.2011.39.2.223]
10. [10] Gholizad, A. and Safari, H. (2016), "Two-Dimensional Continuous Wavelet Transform Method for Multidamage Detection of Space Structures", Journal of Performance of Constructed Facilities. [DOI:10.1061/(ASCE)CF.1943-5509.0000924]
11. [11] Golafshani, A., Kianian, M. and Ghodrati, E. (2010), "Health monitoring of structures using few frequency response measurements", Scientia Iranica, 17(6), 493-500.
12. [12] Haar, A. (1910), "Zur Theorie der orthogonalen Funktionensysteme", Mathematische Annalen, 69(3), 331-371. [DOI:10.1007/BF01456326]
13. [13] Hajizadeh, A.R., Salajegheh, J. and Salajegheh, E. (2016), "Performance evaluation of wavelet and curvelet transforms based-damage detection of defect types in plate structures", Structural Engineering and Mechanics, 60(4), 667-691. [DOI:10.12989/sem.2016.60.4.667]
14. [14] Hamzeloo, S.R., Shamshirsaz, M. and Rezaei, S.M. (2012), "Damage detection on hollow cylinders by Electro-Mechanical Impedance method: Experiments and Finite Element Modeling", Comptes Rendus Mécanique, 340(9), 668-677. [DOI:10.1016/j.crme.2012.07.001]
15. [15] He, W.-Y. and Zhu, S. (2015), "Adaptive-scale damage detection strategy for plate structures based on wavelet finite element model", Structural Engineering and Mechanics, 54(2), 239-256. [DOI:10.12989/sem.2015.54.2.239]
16. [16] Hildreth, E.C. (1984), "Computations underlying the measurement of visual motion", Artificial Intelligence, 23(3), 309-354. [DOI:10.1016/0004-3702(84)90018-3]
17. [17] Homaei, F., Shojaee, S. and Amiri, G.G. (2014), "A direct damage detection method using multiple damage localization index based on mode shapes criterion", Structural Engineering and Mechanics, 49(2), 183-202. [DOI:10.12989/sem.2014.49.2.183]
18. [18] Hoon, S., Gyuhae, P., Jeannette, R.W., Nathan, P.L. and Charles, R.F. (2004), "Wavelet-based active sensing for delamination detection in composite structures", Smart Materials and Structures, 13(1), 153. [DOI:10.1088/0964-1726/13/1/017]
19. [19] Hsieh, K. and Halling, M. (2008), "Structural Damage Detection Using Dynamic Properties Determined from Laboratory and Field Testing", Journal of Performance of Constructed Facilities, 22(4), 238-244. [DOI:10.1061/(ASCE)0887-3828(2008)22:4(238)]
20. [20] Huang, Y., Meyer, D. and Nemat-Nasser, S. (2009), "Damage detection with spatially distributed 2D Continuous Wavelet Transform", Mechanics of Materials, 41(10), 1096-1107. [DOI:10.1016/j.mechmat.2009.05.006]
21. [21] John B. Kosmatka, J.M.R. (1999), "Damage Detection in Structures by Modal Vibration Characterization", Journal of Structural Engineering, 125(12). [DOI:10.1061/(ASCE)0733-9445(1999)125:12(1384)]
22. [22] Katunin, A. (2011), "Damage identification in composite plates using two-dimensional B-spline wavelets", Mechanical Systems and Signal Processing, 25(8), 3153-3167. [DOI:10.1016/j.ymssp.2011.05.015]
23. [23] Kouroussis, G., Fekih, L.B., Conti, C. and Verlinden, O. (2012). "EasyMod: A MatLab/SciLab toolbox for teaching modal analysis", Proceedings of the international congress on sound and vibration, Vilnius.
24. [24] Lee, U. and Shin, J. (2002), "A frequency response function-based structural damage identification method", Computers & Structures, 80(2), 117-132. [DOI:10.1016/S0045-7949(01)00170-5]
25. [25] Li, J., Hao, H., Xia, Y. and Zhu, H.-P. (2015), "Damage assessment of shear connectors with vibration measurements and power spectral density transmissibility", Structural Engineering and Mechanics, 54(2), 257-289. [DOI:10.12989/sem.2015.54.2.257]
26. [26] Lieven, N.A.J. and Ewins, D.J. (2001), "The context of experimental modal analysis", Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences, 359(1778), 5-10. [DOI:10.1098/rsta.2000.0710]
27. [27] Makki Alamdari, M., Li, J. and Samali, B. (2015), "Damage identification using 2-D discrete wavelet transform on extended operational mode shapes", Archives of Civil and Mechanical Engineering, 15(3), 698-710. [DOI:10.1016/j.acme.2014.12.001]
28. [28] Mallat, S. (2008), A wavelet tour of signal processing: the sparse way, Academic press
29. [29] Meruane, V. and Heylen, W. (2011), "An hybrid real genetic algorithm to detect structural damage using modal properties", Mechanical Systems and Signal Processing, 25(5), 1559-1573. [DOI:10.1016/j.ymssp.2010.11.020]
30. [30] Mirzaee, A., Shayanfar, M. and Abbasnia, R. (2015), "A novel sensitivity method to structural damage estimation in bridges with moving mass", Structural Engineering and Mechanics, 54(6), 1217-1244. [DOI:10.12989/sem.2015.54.6.1217]
31. [31] Mohan, S.C., Maiti, D.K. and Maity, D. (2013), "Structural damage assessment using FRF employing particle swarm optimization", Applied Mathematics and Computation, 219(20), 10387-10400. [DOI:10.1016/j.amc.2013.04.016]
32. [32] Nováková, L., Boháčová, M. and Homola, P. (2015), "Application of material analysis and eddy current conductivity tests to aircraft accident investigation", Engineering Failure Analysis, 56, 422-428. [DOI:10.1016/j.engfailanal.2014.12.011]
33. [33] Pandey, A.K., Biswas, M. and Samman, M.M. (1991), "Damage detection from changes in curvature mode shapes", Journal of Sound and Vibration, 145(2), 321-332. [DOI:10.1016/0022-460X(91)90595-B]
34. [34] Qiao, L., Esmaeily, A. and Melhem, H.G. (2012), "Signal Pattern Recognition for Damage Diagnosis in Structures", Computer-Aided Civil and Infrastructure Engineering, 27(9), 699-710. [DOI:10.1111/j.1467-8667.2012.00766.x]
35. [35] Quek, S.T., Tua, P.S. and Wang, Q. (2003), "Detecting anomalies in beams and plate based on the Hilbert-Huang transform of real signals", Smart Materials and Structures, 12(3), 447. [DOI:10.1088/0964-1726/12/3/316]
36. [36] Radzieński, M., Krawczuk, M. and Palacz, M. (2011), "Improvement of damage detection methods based on experimental modal parameters", Mechanical Systems and Signal Processing, 25(6), 2169-2190. [DOI:10.1016/j.ymssp.2011.01.007]
37. [37] Rezaiee-Pajand, M. and Kazemiyan, M.S. (2014), "Damage identification of 2D and 3D trusses by using complete and incomplete noisy measurements", Structural Engineering and Mechanics, 52(1), 149-172. [DOI:10.12989/sem.2014.52.1.149]
38. [38] Roveri, N. and Carcaterra, A. (2012), "Damage detection in structures under traveling loads by Hilbert-Huang transform", Mechanical Systems and Signal Processing, 28, 128-144. [DOI:10.1016/j.ymssp.2011.06.018]
39. [39] Rucka, M. and Wilde, K. (2006), "Application of continuous wavelet transform in vibration based damage detection method for beams and plates", Journal of Sound and Vibration, 297(3-5), 536-550. [DOI:10.1016/j.jsv.2006.04.015]
40. [40] Salehi, M., Ziaei-Rad, S., Ghayour, M. and Vaziri-Zanjani, M.A. (2010), "A structural damage detection technique based on measured frequency response functions", Contemporary Engineering Sciences, 3(5), 215-226.
41. [41] Sanayei, M. and Onipede, O. (1991), "Damage assessment of structures using static test data", AIAA Journal, 29(7), 1174-1179. [DOI:10.2514/3.10720]
42. [42] Siringoringo, D.M. and Fujino, Y. (2009), "Noncontact Operational Modal Analysis of Structural Members by Laser Doppler Vibrometer", Computer-Aided Civil and Infrastructure Engineering, 24(4), 249-265. [DOI:10.1111/j.1467-8667.2008.00585.x]
43. [43] Sohn, H., Lim, H.J., DeSimio, M.P., Brown, K. and Derriso, M. (2014), "Nonlinear ultrasonic wave modulation for online fatigue crack detection", Journal of Sound and Vibration, 333(5), 1473-1484. [DOI:10.1016/j.jsv.2013.10.032]
44. [44] Solís, M., Algaba, M. and Galvín, P. (2013), "Continuous wavelet analysis of mode shapes differences for damage detection", Mechanical Systems and Signal Processing, 40(2), 645-666. [DOI:10.1016/j.ymssp.2013.06.006]
45. [45] Song, Y.-Z., Bowen, C.R., Kim, H.A., Nassehi, A., Padget, J., Gathercole, N. and Dent, A. (2014), "Non-invasive damage detection in beams using marker extraction and wavelets", Mechanical Systems and Signal Processing, 49(1-2), 13-23. [DOI:10.1016/j.ymssp.2013.12.011]
46. [46] Strang, G. and Nguyen, T. (1996), Wavelets and filter banks, SIAM
47. [47] Surace, C. and Ruotolo, R. (1994). "Crack detection of a beam using the wavelet transform", The international society for optical engineering.
48. [48] Wang, Q. and Deng, X. (1999), "Damage detection with spatial wavelets", International Journal of Solids and Structures, 36(23), 3443-3468. [DOI:10.1016/S0020-7683(98)00152-8]
49. [49] Wei Fan and Pizhong Qiao (2011), "Vibration-based Damage Identification Methods: A Review and Comparative Study", Structural Health Monitoring, 10(1), 83-111. [DOI:10.1177/1475921710365419]
50. [50] Xiang, J. and Liang, M. (2012), "Wavelet-based detection of beam cracks using modal shape and frequency measurements", Computer-Aided Civil and Infrastructure Engineering, 27(6), 439-454. [DOI:10.1111/j.1467-8667.2012.00760.x]
51. [51] Xu, W., Cao, M., Ostachowicz, W., Radzieński, M. and Xia, N. (2015), "Two-dimensional curvature mode shape method based on wavelets and Teager energy for damage detection in plates", Journal of Sound and Vibration, 347, 266-278. [DOI:10.1016/j.jsv.2015.02.038]
52. [52] Xu, Y.L., Huang, Q., Zhan, S., Su, Z.Q. and Liu, H.J. (2014), "FRF-based structural damage detection of controlled buildings with podium structures: Experimental investigation", Journal of Sound and Vibration, 333(13), 2762-2775. [DOI:10.1016/j.jsv.2014.02.010]
53. [53] Yang, Z., Chen, X., Zhang, X. and He, Z. (2013), "Free vibration and buckling analysis of plates using B-spline wavelet on the interval Mindlin element", Applied Mathematical Modelling, 37(5), 3449-3466. [DOI:10.1016/j.apm.2012.07.055]
54. [54] Yun, G.J. (2012), "Detection and quantification of structural damage under ambient vibration environment", Structural Engineering and Mechanics, 42(3), 425-448. [DOI:10.12989/sem.2012.42.3.425]
55. [55] Yun, G.J., Lee, S.-G., Carletta, J. and Nagayama, T. (2011), "Decentralized damage identification using wavelet signal analysis embedded on wireless smart sensors", Engineering Structures, 33(7), 2162-2172. [DOI:10.1016/j.engstruct.2011.03.007]
56. [56] Zhong, S. and Oyadiji, S.O. (2011), "Detection of cracks in simply-supported beams by continuous wavelet transform of reconstructed modal data", Computers & Structures, 89(1-2), 127-148. [DOI:10.1016/j.compstruc.2010.08.008]

Add your comments about this article : Your username or Email:

Send email to the article author